import os import spaces import torch import gradio as gr import openai from transformers import pipeline MODEL_NAME = "openai/whisper-large-v3" BATCH_SIZE = 8 FILE_LIMIT_MB = 1000 device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) @spaces.GPU def respond_to_question(transcript, question): # Optionally, use OpenAI API to generate a response to the user's question # based on the transcript response = "" # Replace this with your OpenAI API key openai.api_key = os.environ["OPENAI_API_KEY"] response = openai.Completion.create( engine="gpt-4o-mini", prompt=f"Transcript: {transcript}\n\nUser: {question}\n\nAI:", temperature=0.3, max_tokens=60, top_p=1, frequency_penalty=0, presence_penalty=0 ).choices[0].text return response @spaces.GPU def audio_transcribe(inputs): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps=True)["text"] return text with gr.Blocks() as transcriberUI: gr.Markdown( """ # Ola! Clique no botao abaixo para selecionar o Audio que deseja conversar! Ambiente disponivel 24x7. Running on ZeroGPU with openai/whisper-large-v3 """ ) inp = gr.File(label="Arquivo de Audio", show_label=True, type="filepath", file_count="single", file_types=["mp3"]) transcribe = gr.Textbox(label="Transcricao", show_label=True, show_copy_button=True) ask_question = gr.Textbox(label="Ask a question", visible=True) response_output = gr.Textbox(label="Response", visible=True) submit_question = gr.Button("Submit question", visible=True) def ask_question_callback(transcription,question): if ask_question: response = respond_to_question(transcription, question) response_output.value = response else: response_output.value = "No question asked" return response_output inp.upload(audio_transcribe, inputs=inp, outputs=transcribe) submit_question.click(ask_question_callback, outputs=[response_output], inputs=[transcribe, ask_question]) transcriberUI.queue().launch()