|
import gradio as gr |
|
|
|
def run_evaluation(dataset_id, methodology): |
|
return f'Running evaluation for {dataset_id} with {methodology}' |
|
|
|
if methodology == 'A': |
|
run_a(dataset_id) |
|
elif methodology == 'B': |
|
run_b(dataset_id) |
|
elif methodology == 'C': |
|
run_c(dataset_id) |
|
|
|
def schema_uploaded_file(file): |
|
file_paths = [file.name for file in file] |
|
return file_paths |
|
|
|
demo = gr.Blocks(theme=gr.themes.Soft()) |
|
|
|
with demo: |
|
gr.Markdown("# BiasAware: Dataset Bias Detection") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown("Select a dataset to analyze") |
|
|
|
dataset_id = gr.Text(label="Dataset") |
|
gr.Examples( |
|
examples=["imdb", "amazon_reviews_multi", "tweet_eval"], |
|
fn=run_evaluation, |
|
inputs=[dataset_id] |
|
) |
|
|
|
methodology = gr.Dropdown(["Term Identity Diversity Analysis", "Textual Gender Label Evaluation", "GenBit"], label="Methodology") |
|
|
|
button = gr.Button("Run Evaluation") |
|
|
|
with gr.Column(scale=4): |
|
gr.Markdown("### Results") |
|
|
|
with gr.Box(): |
|
methodology_title = gr.Markdown("### Identity Term Sampling") |
|
methodology_description = gr.Markdown("lorem ipsum") |
|
|
|
methodology_test_description = gr.Markdown("lorem ipsum") |
|
outputs = gr.Markdown() |
|
gr.Error("No results to display") |
|
|
|
|
|
methodology.change( |
|
fn=lambda x: (f'### {x}', "lorem ipseum", "lorem ipsum"), |
|
inputs=[methodology], |
|
outputs=[methodology_title, methodology_description, methodology_test_description] |
|
) |
|
|
|
button.click( |
|
fn=run_evaluation, |
|
inputs=[dataset_id, methodology], |
|
outputs=[outputs] |
|
) |
|
|
|
|
|
gr.Interface(schema_uploaded_file, "file", "text") |
|
|
|
|
|
demo.launch() |