sudipta002 commited on
Commit
a365da6
·
1 Parent(s): 17fc1de

Integrate backend

Browse files
app.py CHANGED
@@ -1,65 +1,213 @@
1
  import gradio as gr
 
 
 
 
 
 
 
2
 
3
- def run_evaluation(dataset_id, methodology):
4
- return f'Running evaluation for {dataset_id} with {methodology}'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- if methodology == 'A':
7
- run_a(dataset_id)
8
- elif methodology == 'B':
9
- run_b(dataset_id)
10
- elif methodology == 'C':
11
- run_c(dataset_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
- def schema_uploaded_file(file):
14
- file_paths = [file.name for file in file]
15
- return file_paths
 
 
 
16
 
17
- demo = gr.Blocks(theme=gr.themes.Soft())
18
 
19
- with demo:
20
- gr.Markdown("# BiasAware: Dataset Bias Detection")
 
 
 
 
 
 
 
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  with gr.Row():
23
  with gr.Column(scale=1):
24
- gr.Markdown("Select a dataset to analyze")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- dataset_id = gr.Text(label="Dataset")
27
- gr.Examples(
28
- examples=["imdb", "amazon_reviews_multi", "tweet_eval"],
29
- fn=run_evaluation,
30
- inputs=[dataset_id]
 
 
 
 
31
  )
32
 
33
- methodology = gr.Dropdown(["Term Identity Diversity Analysis", "Textual Gender Label Evaluation", "GenBit"], label="Methodology")
34
 
35
- button = gr.Button("Run Evaluation")
 
36
 
37
  with gr.Column(scale=4):
38
- gr.Markdown("### Results")
39
 
40
- with gr.Box():
41
- methodology_title = gr.Markdown("### Identity Term Sampling")
42
- methodology_description = gr.Markdown("lorem ipsum")
43
-
44
- methodology_test_description = gr.Markdown("lorem ipsum")
45
- outputs = gr.Markdown()
46
- gr.Error("No results to display")
47
-
 
 
 
 
 
 
 
 
 
 
48
 
49
  methodology.change(
50
- fn=lambda x: (f'### {x}', "lorem ipseum", "lorem ipsum"),
51
  inputs=[methodology],
52
- outputs=[methodology_title, methodology_description, methodology_test_description]
53
  )
54
 
55
- button.click(
56
  fn=run_evaluation,
57
- inputs=[dataset_id, methodology],
58
- outputs=[outputs]
 
59
  )
60
 
61
- # For user dataset upload
62
- gr.Interface(schema_uploaded_file, "file", "text")
63
-
64
-
65
- demo.launch()
 
1
  import gradio as gr
2
+ import pandas as pd
3
+ import os
4
+ from scripts.genbit_metrics import *
5
+ from scripts.gender_profession_tagging import *
6
+ from scripts.gender_tagging import *
7
+ from utils.load_csv import *
8
+ from utils.read_config import get_args
9
 
10
+ dummy_data = [
11
+ ["Category", "Value", "Percentage"],
12
+ ["Total Reviews", 50000, None],
13
+ ["Total Sentences", 621647, None],
14
+ ["Pronouns in Sentences", None, None],
15
+ ["Male Pronouns", 85615, None],
16
+ ["Female Pronouns", 39372, None],
17
+ ["Both Male and Female Pronouns", 7765, None],
18
+ ["Exclusive Usage of Pronouns", None, None],
19
+ ["Only Male Pronouns", 77860, 13.77],
20
+ ["Only Female Pronouns", 31617, 6.33],
21
+ ["Pronouns and Professions in Sentences", None, None],
22
+ ["Male Pronouns with Professions", 5580, 0.9],
23
+ ["Female Pronouns with Professions", 2618, 0.42],
24
+ ["Exclusive Usage of Pronouns with Professions", None, None],
25
+ ["Only Male Pronouns with Professions", 5011, 0.81],
26
+ ["Only Female Pronouns with Professions", 2049, 0.33],
27
+ ["Pronouns and Professions in Combination", None, None],
28
+ ["Male or Female Pronouns with Professions", 7629, 1.23],
29
+ ["Male and Female Pronouns with Professions", 569, 0.09]
30
+ ]
31
 
32
+
33
+ def display_methodology(methodology):
34
+ title = "### " + methodology
35
+ description = ""
36
+
37
+ if methodology == "Term Identity Diversity Analysis":
38
+ description = "333"
39
+ elif methodology == "Gender Label Evaluation":
40
+ description = "This approach to addressing gender bias in language places a strong emphasis on a fundamental shift in detection and mitigation strategies.\n- Instead of solely relying on traditional frequency-based methods, this approach adopts a more nuanced perspective, prioritizing features within the text that consider contextual and semantic cues. It recognizes that gender bias extends beyond mere word frequency and delves into how language is structured and how it reinforces gender stereotypes.\n- Even with advanced models like Word Embedding and Contextual Word Embedding, which capture more complex language features, there's still a risk of inheriting biases from training data.\n- To tackle this, this approach advocates for a data-driven strategy, involving the collection and labeling of datasets encompassing various subtypes of bias, using a comprehensive taxonomy for precise categorization."
41
+ elif methodology == "Microsoft Genbit":
42
+ description = "GenBiT is a versatile tool designed to address gender bias in language datasets by utilizing word co-occurrence statistical methods to measure bias. It introduces a novel approach to mitigating gender bias by combining contextual data augmentation, random sampling, sentence classification, and targeted gendered data filtering.\n- The primary goal is to reduce historical gender biases within conversational parallel multilingual datasets, ultimately enhancing the fairness and inclusiveness of machine learning model training and its subsequent applications.\n- What sets GenBiT apart is its adaptability to various forms of bias, not limited to gender alone. It can effectively address biases related to race, religion, or other dimensions, making it a valuable generic tool for bias mitigation in language datasets.\n- GenBiT's impact extends beyond bias reduction metrics; it has shown positive results in improving the performance of machine learning classifiers like Support Vector Machine(SVM). Augmented datasets produced by GenBiT yield significant enhancements in f1-score when compared to the original datasets, underlining its practical benefits in machine learning applications."
43
+
44
+ return (
45
+ gr.Markdown.update(title, visible=True),
46
+ gr.Markdown.update(description, visible=True)
47
+ )
48
+
49
+
50
+ def run_evaluation(dataset_file, dataset_scope, dataset_scope_n, dataset_columns, methodology):
51
+
52
+ status = {}
53
+ # Read CSV file
54
+ dataset = check_csv(dataset_file.name)
55
+ sample_method = dataset_scope
56
+ col_name = dataset_columns
57
+ num_sample_records = dataset_scope_n
58
+
59
+ # Check selected methodology
60
+ if methodology == "Term Identity Diversity Analysis":
61
+ status = load_dataset_and_analyze_gender_tag(dataset, sample_method, col_name, num_sample_records)
62
+ if methodology == "Gender Label Evaluation":
63
+ status = load_dataset_and_analyze_gender_profession(dataset, sample_method, col_name, num_sample_records)
64
+ if methodology == "Microsoft Genbit":
65
+ status = load_dataset_and_get_genbit_metrics(dataset, sample_method, col_name, num_sample_records)
66
 
67
+ # status = {
68
+ # "dataset": dataset_file.name,
69
+ # "methodology": methodology,
70
+ # "scope": dataset_scope + " " + str(dataset_scope_n),
71
+ # "column": dataset_columns
72
+ # }
73
 
74
+ return gr.JSON.update(status, visible=True)
75
 
76
+ if methodology == "A":
77
+ run_a(dataset)
78
+ elif methodology == "B":
79
+ run_b(dataset)
80
+ elif methodology == "C":
81
+ run_c(dataset)
82
+
83
+
84
+ def process_dataset(dataset):
85
 
86
+ data = pd.read_csv(dataset.name)
87
+ # maximum_records = get_args("first_records")
88
+ # input_records = data.shape(0)
89
+ # num_sample_records = input_records if input_records < maximum_records else maximum_records
90
+
91
+ columns = data.columns.tolist()
92
+ columns = [x for x in columns if data[x].dtype == "object"]
93
+
94
+ return (
95
+ gr.Radio.update(
96
+ label="Scope",
97
+ info="Determines the scope of the dataset to be analyzed",
98
+ choices=["First", "Last", "Random"],
99
+ value="First",
100
+ visible=True,
101
+ interactive=True,
102
+ ),
103
+ gr.Slider.update(
104
+ label="Number of Entries",
105
+ info=f"Determines the number of entries to be analyzed. The dataset has {data.shape[0]} entries.",
106
+ minimum=1,
107
+ maximum=data.shape[0],
108
+ value=data.shape[0] // 2,
109
+ visible=True,
110
+ interactive=True
111
+ ),
112
+ gr.Radio.update(
113
+ label="Column",
114
+ info="Determines the column to be analyzed. These are the columns with text data.",
115
+ choices=columns,
116
+ value=columns[0],
117
+ visible=True,
118
+ interactive=True,
119
+ )
120
+ )
121
+
122
+
123
+ def process_column(dataset, column):
124
+ data = pd.read_csv(dataset.name)
125
+ corpus = data[column].to_list()[:10]
126
+
127
+ return gr.Dataframe.update(value=pd.DataFrame({"Data Corpus": corpus}), max_rows=5, visible=True)
128
+
129
+
130
+ BiasAware = gr.Blocks(title="BiasAware: Dataset Bias Detection")
131
+
132
+ with BiasAware:
133
+ gr.Markdown("# BiasAware: Dataset Bias Detection")
134
+ gr.Markdown(
135
+ "Natural Language Processing (NLP) training datasets often reflect the biases present in the data sources they are compiled from, leading to the **perpetuation of stereotypes, underrepresentation, and skewed perspectives in AI models**. BiasAware is designed to **identify and quantify biases present in text data**, making it an invaluable resource for data scientists, machine learning practitioners, and organizations committed to **mitigating bias in AI systems**."
136
+ )
137
+
138
  with gr.Row():
139
  with gr.Column(scale=1):
140
+ gr.Markdown("## Dataset")
141
+
142
+ dataset_file = gr.File()
143
+ dataset_examples = gr.Examples(
144
+ [
145
+ os.path.join(os.path.dirname(__file__), "data/z_animal.csv"),
146
+ os.path.join(os.path.dirname(__file__), "data/z_employee.csv"),
147
+ os.path.join(os.path.dirname(__file__), "data/z_house.csv"),
148
+
149
+ ],
150
+ inputs=dataset_file,
151
+ )
152
+
153
+ dataset_scope = gr.Radio(visible=False)
154
+ dataset_scope_n = gr.Slider(visible=False)
155
+ dataset_columns = gr.Radio(visible=False)
156
+
157
+ dataset_corpus = gr.Dataframe(visible=False)
158
+
159
+ with gr.Column(scale=1):
160
+ gr.Markdown("## Methodology")
161
 
162
+ methodology = gr.Radio(
163
+ label="Methodology",
164
+ info="Determines the methodology to be used for bias detection",
165
+ choices=[
166
+ "Term Identity Diversity Analysis",
167
+ "Gender Label Evaluation",
168
+ "Microsoft Genbit",
169
+ ],
170
+ value="Term Identity Diversity Analysis",
171
  )
172
 
173
+ evalButton = gr.Button("Run Evaluation")
174
 
175
+ methodology_title = gr.Markdown(visible=False)
176
+ methodology_description = gr.Markdown(visible=False)
177
 
178
  with gr.Column(scale=4):
179
+ gr.Markdown("## Result")
180
 
181
+ result_status = gr.JSON(visible=False)
182
+ result = gr.DataFrame()
183
+
184
+ dataset_file.change(
185
+ fn=process_dataset,
186
+ inputs=[dataset_file],
187
+ outputs=[
188
+ dataset_scope,
189
+ dataset_scope_n,
190
+ dataset_columns
191
+ ]
192
+ )
193
+
194
+ dataset_columns.change(
195
+ fn=process_column,
196
+ inputs=[dataset_file, dataset_columns],
197
+ outputs=[dataset_corpus],
198
+ )
199
 
200
  methodology.change(
201
+ fn=display_methodology,
202
  inputs=[methodology],
203
+ outputs=[methodology_title, methodology_description],
204
  )
205
 
206
+ evalButton.click(
207
  fn=run_evaluation,
208
+ inputs=[dataset_file, dataset_scope,
209
+ dataset_scope_n, dataset_columns, methodology],
210
+ outputs=[result_status]
211
  )
212
 
213
+ BiasAware.launch()
 
 
 
 
scripts/genbit_metrics.py CHANGED
@@ -1,6 +1,7 @@
1
  from genbit.genbit_metrics import GenBitMetrics
2
  import pandas as pd
3
  from utils.read_config import get_args
 
4
 
5
 
6
  def cal_metrics(dataset):
@@ -19,37 +20,24 @@ def cal_metrics(dataset):
19
 
20
  return metrics
21
 
22
- # Function to load sample of dataset
23
- def load_sample(sample_first_records, sample_random_seed, sample_method, df, col_name):
24
-
25
- # Keep only requireed column
26
- df = df[[col_name]]
27
- if sample_method == "first_record" and df.shape[0] > sample_first_records:
28
- df = df.iloc[:sample_first_records].copy().reset_index()
29
- if sample_method == "random_pick" and df.shape[0] > sample_first_records:
30
- df = df.sample(sample_first_records, random_state=sample_random_seed).copy().reset_index()
31
- return df
32
-
33
 
34
  # Function to extract genbit metrics
35
  def extract_genbit_metris(stats):
36
  metrics = {}
37
- metrics["genbit_score"] = stats["genbit_score"]
38
- metrics["percentage_of_female_gender_definition_words"] = stats["percentage_of_female_gender_definition_words"]
39
- metrics["percentage_of_male_gender_definition_words"] = stats["percentage_of_male_gender_definition_words"]
40
- metrics["percentage_of_non_binary_gender_definition_words"] = stats["percentage_of_non_binary_gender_definition_words"]
41
- metrics["percentage_of_trans_gender_definition_words"] = stats["percentage_of_trans_gender_definition_words"]
42
- metrics["percentage_of_cis_gender_definition_words"] = stats["percentage_of_cis_gender_definition_words"]
43
- metrics["num_words_considered"] = stats["statistics"]["num_words_considered"]
44
 
45
  return metrics
46
 
47
- def load_dataset_and_get_genbit_metrics(df, sample_method, col_name):
48
- # Get args from config file
49
- sample_first_records = get_args("first_records")
50
- sample_random_seed = get_args("random_seed")
51
 
52
- sample_df = load_sample(sample_first_records, sample_random_seed, sample_method, df, col_name)
53
 
54
  # Turn into a list of text.
55
  sample_text = sample_df[col_name].tolist()
 
1
  from genbit.genbit_metrics import GenBitMetrics
2
  import pandas as pd
3
  from utils.read_config import get_args
4
+ from utils.load_csv import load_sample
5
 
6
 
7
  def cal_metrics(dataset):
 
20
 
21
  return metrics
22
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  # Function to extract genbit metrics
25
  def extract_genbit_metris(stats):
26
  metrics = {}
27
+ metrics["genbit_score"] = str(stats["genbit_score"])
28
+ metrics["percentage_of_female_gender_definition_words"] = str(stats["percentage_of_female_gender_definition_words"])
29
+ metrics["percentage_of_male_gender_definition_words"] = str(stats["percentage_of_male_gender_definition_words"])
30
+ metrics["percentage_of_non_binary_gender_definition_words"] = str(stats["percentage_of_non_binary_gender_definition_words"])
31
+ metrics["percentage_of_trans_gender_definition_words"] = str(stats["percentage_of_trans_gender_definition_words"])
32
+ metrics["percentage_of_cis_gender_definition_words"] = str(stats["percentage_of_cis_gender_definition_words"])
33
+ metrics["num_words_considered"] = str(stats["statistics"]["num_words_considered"])
34
 
35
  return metrics
36
 
37
+ def load_dataset_and_get_genbit_metrics(df, sample_method, col_name, num_sample_records):
38
+
 
 
39
 
40
+ sample_df = load_sample(num_sample_records, sample_method, df, col_name)
41
 
42
  # Turn into a list of text.
43
  sample_text = sample_df[col_name].tolist()
scripts/gender_profession_tagging.py CHANGED
@@ -9,6 +9,7 @@ import multiprocessing.pool
9
  import warnings
10
  warnings.filterwarnings("ignore")
11
  from utils.read_config import get_args
 
12
 
13
 
14
  # For sentence split
@@ -88,12 +89,12 @@ def get_statistics(results_df):
88
  count_female_pronoun_profession = results_df[(results_df["Female Pronoun"] != "") & (results_df["Profession"] != "")]["Female Pronoun"].count()
89
 
90
  return{
91
- "total_sentence" : count_total_sentence,
92
- "both_gender_prof_match" : count_both_match,
93
- "count_male_pronoun" : count_male_pronoun,
94
- "count_female_pronoun" : count_female_pronoun,
95
- "count_male_pronoun_profession" : count_male_pronoun_profession,
96
- "count_female_pronoun_profession" : count_female_pronoun_profession
97
  }
98
 
99
  # Function to return regular expression patterns
@@ -109,23 +110,11 @@ def get_regex_pattern(male_pronoun, female_pronoun, professions):
109
 
110
  return male_pronoun_pat, female_pronoun_pat, professions_pat
111
 
112
- # Function to load sample of dataset
113
- def load_sample(sample_first_records, sample_random_seed, sample_method, df, col_name):
114
-
115
- # Keep only requireed column
116
- df = df[[col_name]]
117
- if sample_method == "first_record" and df.shape[0] > sample_first_records:
118
- df = df.iloc[:sample_first_records].copy().reset_index()
119
- if sample_method == "random_pick" and df.shape[0] > sample_first_records:
120
- df = df.sample(sample_first_records, random_state=sample_random_seed).copy().reset_index()
121
- return df
122
-
123
- def load_dataset_and_analyze_gender_profession(df, sample_method, col_name):
124
  # Get args from config file
125
- sample_first_records = get_args("first_records")
126
- sample_random_seed = get_args("random_seed")
127
 
128
- sample_df = load_sample(sample_first_records, sample_random_seed, sample_method, df, col_name)
129
 
130
 
131
  # Lowercase of text
 
9
  import warnings
10
  warnings.filterwarnings("ignore")
11
  from utils.read_config import get_args
12
+ from utils.load_csv import load_sample
13
 
14
 
15
  # For sentence split
 
89
  count_female_pronoun_profession = results_df[(results_df["Female Pronoun"] != "") & (results_df["Profession"] != "")]["Female Pronoun"].count()
90
 
91
  return{
92
+ "total_sentence" : str(count_total_sentence),
93
+ "both_gender_prof_match" : str(count_both_match),
94
+ "count_male_pronoun" : str(count_male_pronoun),
95
+ "count_female_pronoun" : str(count_female_pronoun),
96
+ "count_male_pronoun_profession" : str(count_male_pronoun_profession),
97
+ "count_female_pronoun_profession" : str(count_female_pronoun_profession)
98
  }
99
 
100
  # Function to return regular expression patterns
 
110
 
111
  return male_pronoun_pat, female_pronoun_pat, professions_pat
112
 
113
+
114
+ def load_dataset_and_analyze_gender_profession(df, sample_method, col_name, num_sample_records):
 
 
 
 
 
 
 
 
 
 
115
  # Get args from config file
 
 
116
 
117
+ sample_df = load_sample(num_sample_records, sample_method, df, col_name)
118
 
119
 
120
  # Lowercase of text
scripts/gender_tagging.py CHANGED
@@ -2,6 +2,7 @@
2
  import pandas as pd
3
  import re
4
  from utils.read_config import get_args
 
5
 
6
  # Function to get count of male terms in text
7
  def count_male_terms(text, male_terms):
@@ -43,17 +44,6 @@ def get_gender_tag(count_m_term, count_f_term):
43
  return tag
44
 
45
 
46
- # Function to load sample of dataset
47
- def load_sample(sample_first_records, sample_random_seed, sample_method, df, col_name):
48
-
49
- # Keep only requireed column
50
- df = df[[col_name]]
51
- if sample_method == "first_record" and df.shape[0] > sample_first_records:
52
- df = df.iloc[:sample_first_records].copy().reset_index()
53
- if sample_method == "random_pick" and df.shape[0] > sample_first_records:
54
- df = df.sample(sample_first_records, random_state=sample_random_seed).copy().reset_index()
55
- return df
56
-
57
  # Function to calculate PG and SPG
58
  def get_pg_spg(sample_df):
59
  count_no_gender_sentences = sample_df[sample_df["gender_cat"] == "No Gender"]['gender_cat'].count()
@@ -68,28 +58,22 @@ def get_pg_spg(sample_df):
68
  count_female_spg = sample_df[sample_df['gender_cat'] == "Female Stronly Positive Gender"]['gender_cat'].count()
69
 
70
  return {
71
- "gender" : count_gender_sentences,
72
- "no gender" : count_no_gender_sentences,
73
- "equal gender" : count_equal_gender,
74
- "female pg" : count_female_pg,
75
- "male pg" : count_male_pg,
76
- "female spg" : count_female_spg,
77
- "male spg" : count_male_spg
78
  }
79
 
80
  # Function to load dataset and get the analysis done
81
- def load_dataset_and_analyze_gender_tag(df, sample_method, col_name):
82
  # Read config file
83
-
84
  male_terms = get_args("male_terms")
85
  female_terms = get_args("female_terms")
86
- sample_first_records = get_args("first_records")
87
- sample_random_seed = get_args("random_seed")
88
-
89
-
90
-
91
- sample_df = load_sample(sample_first_records, sample_random_seed, sample_method, df, col_name)
92
-
93
 
94
  # Lowercase of text
95
  sample_df[col_name] = sample_df[col_name].str.lower().str.strip()
 
2
  import pandas as pd
3
  import re
4
  from utils.read_config import get_args
5
+ from utils.load_csv import load_sample
6
 
7
  # Function to get count of male terms in text
8
  def count_male_terms(text, male_terms):
 
44
  return tag
45
 
46
 
 
 
 
 
 
 
 
 
 
 
 
47
  # Function to calculate PG and SPG
48
  def get_pg_spg(sample_df):
49
  count_no_gender_sentences = sample_df[sample_df["gender_cat"] == "No Gender"]['gender_cat'].count()
 
58
  count_female_spg = sample_df[sample_df['gender_cat'] == "Female Stronly Positive Gender"]['gender_cat'].count()
59
 
60
  return {
61
+ "gender" : str(count_gender_sentences),
62
+ "no gender" : str(count_no_gender_sentences),
63
+ "equal gender" : str(count_equal_gender),
64
+ "female pg" : str(count_female_pg),
65
+ "male pg" : str(count_male_pg),
66
+ "female spg" : str(count_female_spg),
67
+ "male spg" : str(count_male_spg)
68
  }
69
 
70
  # Function to load dataset and get the analysis done
71
+ def load_dataset_and_analyze_gender_tag(df, sample_method, col_name, num_sample_records):
72
  # Read config file
 
73
  male_terms = get_args("male_terms")
74
  female_terms = get_args("female_terms")
75
+ # Load sample
76
+ sample_df = load_sample(num_sample_records, sample_method, df, col_name)
 
 
 
 
 
77
 
78
  # Lowercase of text
79
  sample_df[col_name] = sample_df[col_name].str.lower().str.strip()
utils/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "first_records" : 200,
3
  "random_seed" : 42,
4
  "male_terms" : ["man", "boy", "male", "he", "son", "his", "himself", "guy", "father", "john"],
5
  "female_terms" : ["woman", "girl", "female", "she", "daughter", "her", "herself", "gal", "mother", "mary"],
 
1
  {
2
+ "first_records" : 2000,
3
  "random_seed" : 42,
4
  "male_terms" : ["man", "boy", "male", "he", "son", "his", "himself", "guy", "father", "john"],
5
  "female_terms" : ["woman", "girl", "female", "she", "daughter", "her", "herself", "gal", "mother", "mary"],