freyam commited on
Commit
eee0fd3
·
1 Parent(s): 0998e6d

Cleanup app launching and error handling for FileNotFound

Browse files
Files changed (1) hide show
  1. app.py +68 -87
app.py CHANGED
@@ -140,66 +140,79 @@ def evaluate():
140
 
141
 
142
  def load_dataset(local_dataset, hf_dataset):
143
- if local_dataset:
144
- EVALUATION["dataset_id"] = os.path.splitext(
145
- os.path.basename(local_dataset.name)
146
- )[0]
147
- EVALUATION["source"] = "Local Dataset"
148
- EVALUATION["df"] = pd.read_csv(local_dataset.name)
149
- else:
150
- EVALUATION["dataset_id"] = hf_dataset
151
- EVALUATION["source"] = "HuggingFace Hub"
152
- EVALUATION["df"] = hf_load_dataset(hf_dataset, split="train[0:100]").to_pandas()
153
-
154
- columns = EVALUATION["df"].select_dtypes(include=["object"]).columns.tolist()
155
- column_corpus = EVALUATION["df"][columns[0]].tolist()[:5]
156
-
157
- dataset_sampling_method = gr.Radio(
158
- label="Scope",
159
- info="Determines the scope of the dataset to be analyzed",
160
- choices=["First", "Last", "Random"],
161
- value="First",
162
- visible=True,
163
- interactive=True,
164
- )
 
 
 
165
 
166
- dataset_sampling_size = gr.Slider(
167
- label=f"Number of Entries",
168
- info=f"Determines the number of entries to be analyzed. Due to computational constraints, the maximum number of entries that can be analyzed is {SAMPLING_SIZE_THRESHOLD}.",
169
- minimum=1,
170
- maximum=min(EVALUATION["df"].shape[0], SAMPLING_SIZE_THRESHOLD),
171
- value=min(EVALUATION["df"].shape[0], SAMPLING_SIZE_THRESHOLD),
172
- visible=True,
173
- interactive=True,
174
- )
175
 
176
- dataset_column = gr.Radio(
177
- label="Column",
178
- info="Determines the column to be analyzed. These are the columns with text data.",
179
- choices=columns,
180
- value=columns[0],
181
- visible=True,
182
- interactive=True,
183
- )
184
 
185
- dataset_column_corpus = gr.Dataframe(
186
- value=pd.DataFrame({f"{columns[0]}": column_corpus}), visible=True
187
- )
188
 
189
- dataset_import_btn = gr.Button(
190
- value="Import Dataset",
191
- interactive=True,
192
- variant="primary",
193
- visible=True,
194
- )
195
 
196
- return (
197
- dataset_sampling_method,
198
- dataset_sampling_size,
199
- dataset_column,
200
- dataset_column_corpus,
201
- dataset_import_btn,
202
- )
 
 
 
 
 
 
 
 
 
 
203
 
204
 
205
  def import_dataset(dataset_sampling_method, dataset_sampling_size, dataset_column):
@@ -453,35 +466,3 @@ with BiasAware:
453
 
454
  if __name__ == "__main__":
455
  BiasAware.launch()
456
-
457
-
458
- if __name__ == "__main__":
459
- BiasAware.launch()
460
-
461
-
462
- if __name__ == "__main__":
463
- BiasAware.launch()
464
-
465
-
466
- if __name__ == "__main__":
467
- BiasAware.launch()
468
-
469
-
470
- if __name__ == "__main__":
471
- BiasAware.launch()
472
-
473
-
474
- if __name__ == "__main__":
475
- BiasAware.launch()
476
-
477
-
478
- if __name__ == "__main__":
479
- BiasAware.launch()
480
-
481
-
482
- if __name__ == "__main__":
483
- BiasAware.launch()
484
-
485
-
486
- if __name__ == "__main__":
487
- BiasAware.launch()
 
140
 
141
 
142
  def load_dataset(local_dataset, hf_dataset):
143
+ try:
144
+ if local_dataset:
145
+ EVALUATION["dataset_id"] = os.path.splitext(
146
+ os.path.basename(local_dataset.name)
147
+ )[0]
148
+ EVALUATION["source"] = "Local Dataset"
149
+ EVALUATION["df"] = pd.read_csv(local_dataset.name)
150
+ else:
151
+ EVALUATION["dataset_id"] = hf_dataset
152
+ EVALUATION["source"] = "HuggingFace Hub"
153
+ EVALUATION["df"] = hf_load_dataset(
154
+ hf_dataset, split="train[0:100]"
155
+ ).to_pandas()
156
+
157
+ columns = EVALUATION["df"].select_dtypes(include=["object"]).columns.tolist()
158
+ column_corpus = EVALUATION["df"][columns[0]].tolist()[:5]
159
+
160
+ dataset_sampling_method = gr.Radio(
161
+ label="Scope",
162
+ info="Determines the scope of the dataset to be analyzed",
163
+ choices=["First", "Last", "Random"],
164
+ value="First",
165
+ visible=True,
166
+ interactive=True,
167
+ )
168
 
169
+ dataset_sampling_size = gr.Slider(
170
+ label=f"Number of Entries",
171
+ info=f"Determines the number of entries to be analyzed. Due to computational constraints, the maximum number of entries that can be analyzed is {SAMPLING_SIZE_THRESHOLD}.",
172
+ minimum=1,
173
+ maximum=min(EVALUATION["df"].shape[0], SAMPLING_SIZE_THRESHOLD),
174
+ value=min(EVALUATION["df"].shape[0], SAMPLING_SIZE_THRESHOLD),
175
+ visible=True,
176
+ interactive=True,
177
+ )
178
 
179
+ dataset_column = gr.Radio(
180
+ label="Column",
181
+ info="Determines the column to be analyzed. These are the columns with text data.",
182
+ choices=columns,
183
+ value=columns[0],
184
+ visible=True,
185
+ interactive=True,
186
+ )
187
 
188
+ dataset_column_corpus = gr.Dataframe(
189
+ value=pd.DataFrame({f"{columns[0]}": column_corpus}), visible=True
190
+ )
191
 
192
+ dataset_import_btn = gr.Button(
193
+ value="Import Dataset",
194
+ interactive=True,
195
+ variant="primary",
196
+ visible=True,
197
+ )
198
 
199
+ return (
200
+ dataset_sampling_method,
201
+ dataset_sampling_size,
202
+ dataset_column,
203
+ dataset_column_corpus,
204
+ dataset_import_btn,
205
+ )
206
+
207
+ except FileNotFoundError as e:
208
+ print(f"FileNotFoundError: {e}")
209
+ return (
210
+ gr.Radio(visible=False),
211
+ gr.Slider(visible=False),
212
+ gr.Radio(visible=False),
213
+ gr.Dataframe(visible=False),
214
+ gr.Button(visible=False),
215
+ )
216
 
217
 
218
  def import_dataset(dataset_sampling_method, dataset_sampling_size, dataset_column):
 
466
 
467
  if __name__ == "__main__":
468
  BiasAware.launch()