import json import gradio as gr import pandas as pd import os from scripts.genbit import * from scripts.gender_profession_bias import * from scripts.gender_divide import * methodologies = json.load(open("config/methodologies.json", "r")) MAX_THRESHOLD = 1000 def evaluate(dataset, sampling_method, sampling_size, column, methodology): try: print( f"[{dataset.name.split('/')[-1]}::{column}] - {sampling_method} {sampling_size} entries" ) data = pd.read_csv(dataset.name, usecols=[column]) if sampling_method == "First": data = data.head(sampling_size) elif sampling_method == "Last": data = data.tail(sampling_size) elif sampling_method == "Random": data = data.sample(n=sampling_size, random_state=42) result = globals()[methodologies.get(methodology).get("fx")](data) return gr.JSON.update(result, visible=True) except Exception as e: return gr.JSON.update( { "error": f"An error occurred while processing the dataset. Please check the dataset and try again. Error: {e}" }, visible=True, ) def display_dataset_config(dataset): try: data = pd.read_csv(dataset.name) columns = data.select_dtypes(include=["object"]).columns.tolist() corpus = data[columns[0]].tolist() return ( gr.Radio.update( label="Scope", info="Determines the scope of the dataset to be analyzed", choices=["First", "Last", "Random"], value="First", visible=True, interactive=True, ), gr.Slider.update( label=f"Number of Entries", info=f"Determines the number of entries to be analyzed. Due to computational constraints, the maximum number of entries that can be analyzed is {MAX_THRESHOLD}.", minimum=1, maximum=min(data.shape[0], MAX_THRESHOLD), value=min(data.shape[0], MAX_THRESHOLD) // 2, visible=True, interactive=True, ), gr.Radio.update( label="Column", info="Determines the column to be analyzed. These are the columns with text data.", choices=columns, value=columns[0], visible=True, interactive=True, ), gr.DataFrame.update( value=pd.DataFrame({f"Data Corpus: {columns[0]}": corpus}), visible=True ), ) except: return ( gr.Radio.update(visible=False), gr.Slider.update(visible=False), gr.Radio.update(visible=False), gr.DataFrame.update(visible=False), ) def update_column_metadata(dataset, column): data = pd.read_csv(dataset.name) corpus = data[column].tolist() return gr.Dataframe.update( value=pd.DataFrame({f"Data Corpus: {column}": corpus}), visible=True ) def get_methodology_metadata(methodology): title = "## " + methodology description = methodologies.get(methodology).get("description") metadata = f"{title}\n\n{description}" return ( gr.Markdown.update(metadata, visible=True), gr.Button.update(interactive=True, visible=True), ) BiasAware = gr.Blocks(title="BiasAware: Dataset Bias Detection") with BiasAware: gr.Markdown( "# BiasAware: Dataset Bias Detection\n\nBiasAware is a specialized tool for detecting and quantifying biases within datasets used for Natural Language Processing (NLP) tasks. NLP training datasets frequently mirror the inherent biases of their source materials, resulting in AI models that unintentionally perpetuate stereotypes, exhibit underrepresentation, and showcase skewed perspectives." ) with gr.Row(): with gr.Column(scale=2): gr.Markdown("## Dataset") dataset_file = gr.File(label="Dataset", file_types=["csv"]) dataset_examples = gr.Examples( [ os.path.join(os.path.dirname(__file__), "data/z_animal.csv"), os.path.join(os.path.dirname(__file__), "data/z_employee.csv"), os.path.join(os.path.dirname(__file__), "data/z_sentences.csv"), ], inputs=dataset_file, label="Example Datasets", ) dataset_sampling_method = gr.Radio(visible=False) dataset_sampling_size = gr.Slider(visible=False) dataset_column = gr.Radio(visible=False) dataset_corpus = gr.Dataframe( row_count=(5, "fixed"), col_count=(1, "fixed"), visible=False ) with gr.Column(scale=2): gr.Markdown("## Methodology") methodology = gr.Radio( label="Methodology", info="Determines the methodology to be used for bias detection", choices=methodologies.keys(), ) evalButton = gr.Button(value="Run Evaluation", interactive=False) methodology_metadata = gr.Markdown(visible=False) with gr.Column(scale=4): gr.Markdown("## Result") result_status = gr.JSON(visible=False) result = gr.DataFrame( row_count=(5, "fixed"), col_count=(3, "fixed"), visible=False ) dataset_file.change( fn=display_dataset_config, inputs=[dataset_file], outputs=[ dataset_sampling_method, dataset_sampling_size, dataset_column, dataset_corpus, ], ) dataset_column.change( fn=update_column_metadata, inputs=[dataset_file, dataset_column], outputs=[dataset_corpus], ) methodology.change( fn=get_methodology_metadata, inputs=[methodology], outputs=[methodology_metadata, evalButton], ) evalButton.click( fn=evaluate, inputs=[ dataset_file, dataset_sampling_method, dataset_sampling_size, dataset_column, methodology, ], outputs=[result_status], ) BiasAware.launch()