indie-label / server.py
carolmanderson
Merge remote-tracking branch 'upstream/main' into docker-hf
b9fd2bc
from flask import Flask, send_from_directory
from flask import request
import random
import json
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pickle
import os
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import confusion_matrix
import math
import altair as alt
import matplotlib.pyplot as plt
import time
import friendlywords as fw
import audit_utils as utils
import requests
app = Flask(__name__)
DEBUG = False # Debug flag for development; set to False for production
# Path for our main Svelte page
@app.route("/")
def base():
return send_from_directory('indie_label_svelte/public', 'index.html')
# Path for all the static files (compiled JS/CSS, etc.)
@app.route("/<path:path>")
def home(path):
return send_from_directory('indie_label_svelte/public', path)
########################################
# ROUTE: /AUDIT_SETTINGS
@app.route("/audit_settings")
def audit_settings(debug=DEBUG):
# Fetch page content
user = request.args.get("user")
scaffold_method = request.args.get("scaffold_method")
# Assign user ID if none is provided (default case)
if user == "null":
# Generate random two-word user ID
user = fw.generate(2, separator="_")
user_models = utils.get_user_model_names(user)
grp_models = [m for m in user_models if m.startswith(f"model_{user}_group_")]
clusters = utils.get_unique_topics()
if len(user_models) > 2 and scaffold_method != "tutorial" and user != "DemoUser":
# Highlight topics that have been tuned
tuned_clusters = [m.lstrip(f"model_{user}_") for m in user_models if (m != f"model_{user}" and not m.startswith(f"model_{user}_group_"))]
other_clusters = [c for c in clusters if c not in tuned_clusters]
tuned_options = {
"label": "Topics with tuned models",
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(tuned_clusters)],
}
other_options = {
"label": "All other topics",
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(other_clusters)],
}
clusters_options = [tuned_options, other_options]
else:
clusters_options = [{
"label": "All auto-generated topics",
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(clusters)],
},]
clusters_for_tuning = utils.get_large_clusters(min_n=150)
clusters_for_tuning_options = [{"value": i, "text": cluster} for i, cluster in enumerate(clusters_for_tuning)] # Format for Svelecte UI element
context = {
"personalized_models": user_models,
"personalized_model_grp": grp_models,
"perf_metrics": ["Average rating difference", "Mean Absolute Error (MAE)", "Root Mean Squared Error (RMSE)", "Mean Squared Error (MSE)"],
"clusters": clusters_options,
"clusters_for_tuning": clusters_for_tuning_options,
"user": user,
}
return json.dumps(context)
########################################
# ROUTE: /GET_AUDIT
@app.route("/get_audit")
def get_audit():
pers_model = request.args.get("pers_model")
error_type = request.args.get("error_type")
cur_user = request.args.get("cur_user")
topic_vis_method = request.args.get("topic_vis_method")
if topic_vis_method == "null":
topic_vis_method = "median"
if pers_model == "" or pers_model == "null" or pers_model == "undefined":
overall_perf = None
else:
overall_perf = utils.show_overall_perf(
cur_model=pers_model,
error_type=error_type,
cur_user=cur_user,
topic_vis_method=topic_vis_method,
)
results = {
"overall_perf": overall_perf,
}
return json.dumps(results)
########################################
# ROUTE: /GET_CLUSTER_RESULTS
@app.route("/get_cluster_results")
def get_cluster_results(debug=DEBUG):
pers_model = request.args.get("pers_model")
cur_user = request.args.get("cur_user")
cluster = request.args.get("cluster")
topic_df_ids = request.args.getlist("topic_df_ids")
topic_df_ids = [int(val) for val in topic_df_ids[0].split(",") if val != ""]
search_type = request.args.get("search_type")
keyword = request.args.get("keyword")
error_type = request.args.get("error_type")
use_model = request.args.get("use_model") == "true"
if debug:
print(f"get_cluster_results using model {pers_model}")
# Prepare cluster df (topic_df)
topic_df = None
preds_file = utils.get_preds_file(cur_user, pers_model)
with open(preds_file, "rb") as f:
topic_df = pickle.load(f)
if search_type == "cluster":
# Display examples with comment, your pred, and other users' pred
topic_df = topic_df[(topic_df["topic"] == cluster) | (topic_df["item_id"].isin(topic_df_ids))]
elif search_type == "keyword":
topic_df = topic_df[(topic_df["comment"].str.contains(keyword, case=False, regex=False)) | (topic_df["item_id"].isin(topic_df_ids))]
topic_df = topic_df.drop_duplicates()
if debug:
print("len topic_df", len(topic_df))
# Handle empty results
if len(topic_df) == 0:
results = {
"user_perf_rounded": None,
"user_direction": None,
"other_perf_rounded": None,
"other_direction": None,
"n_other_users": None,
"cluster_examples": None,
"odds_ratio": None,
"odds_ratio_explanation": None,
"topic_df_ids": [],
"cluster_overview_plot_json": None,
"cluster_comments": None,
}
return results
topic_df_ids = topic_df["item_id"].unique().tolist()
# Prepare overview plot for the cluster
if use_model:
# Display results with the model as a reference point
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster(cur_user, topic_df, error_type=error_type, n_comments=500)
else:
# Display results without a model
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster_no_model(cur_user, topic_df, n_comments=500)
cluster_comments = utils.get_cluster_comments(sampled_df,error_type=error_type, use_model=use_model) # New version of cluster comment table
results = {
"topic_df_ids": topic_df_ids,
"cluster_overview_plot_json": json.loads(cluster_overview_plot_json),
"cluster_comments": cluster_comments.to_json(orient="records"),
}
return json.dumps(results)
########################################
# ROUTE: /GET_GROUP_SIZE
@app.route("/get_group_size")
def get_group_size():
# Fetch info for initial labeling component
sel_gender = request.args.get("sel_gender")
sel_pol = request.args.get("sel_pol")
sel_relig = request.args.get("sel_relig")
sel_race = request.args.get("sel_race")
sel_lgbtq = request.args.get("sel_lgbtq")
if sel_race != "":
sel_race = sel_race.split(",")
_, group_size = utils.get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq)
context = {
"group_size": group_size,
}
return json.dumps(context)
########################################
# ROUTE: /GET_GROUP_MODEL
@app.route("/get_group_model")
def get_group_model(debug=DEBUG):
# Fetch info for initial labeling component
model_name = request.args.get("model_name")
user = request.args.get("user")
sel_gender = request.args.get("sel_gender")
sel_pol = request.args.get("sel_pol")
sel_relig = request.args.get("sel_relig")
sel_lgbtq = request.args.get("sel_lgbtq")
sel_race_orig = request.args.get("sel_race")
if sel_race_orig != "":
sel_race = sel_race_orig.split(",")
else:
sel_race = ""
start = time.time()
grp_df, group_size = utils.get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq)
grp_ids = grp_df["worker_id"].tolist()
ratings_grp = utils.get_grp_model_labels(
n_label_per_bin=BIN_DISTRIB,
score_bins=SCORE_BINS,
grp_ids=grp_ids,
)
# Modify model name
model_name = f"{model_name}_group_gender{sel_gender}_relig{sel_relig}_pol{sel_pol}_race{sel_race_orig}_lgbtq_{sel_lgbtq}"
utils.setup_user_model_dirs(user, model_name)
# Train group model
mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, ratings_grp, user)
duration = time.time() - start
if debug:
print("Time to train/cache:", duration)
context = {
"group_size": group_size,
"mae": mae,
}
return json.dumps(context)
########################################
# ROUTE: /GET_LABELING
@app.route("/get_labeling")
def get_labeling():
# Fetch info for initial labeling component
user = request.args.get("user")
clusters_for_tuning = utils.get_large_clusters(min_n=150)
clusters_for_tuning_options = [{"value": i, "text": cluster} for i, cluster in enumerate(clusters_for_tuning)] # Format for Svelecte UI element
model_name_suggestion = f"my_model"
context = {
"personalized_models": utils.get_user_model_names(user),
"model_name_suggestion": model_name_suggestion,
"clusters_for_tuning": clusters_for_tuning_options,
}
return json.dumps(context)
########################################
# ROUTE: /GET_COMMENTS_TO_LABEL
if DEBUG:
BIN_DISTRIB = [1, 2, 4, 2, 1] # 10 comments
else:
BIN_DISTRIB = [2, 4, 8, 4, 2] # 20 comments
SCORE_BINS = [(0.0, 0.5), (0.5, 1.5), (1.5, 2.5), (2.5, 3.5), (3.5, 4.01)]
@app.route("/get_comments_to_label")
def get_comments_to_label():
n = int(request.args.get("n"))
# Fetch examples to label
to_label_ids = utils.create_example_sets(
n_label_per_bin=BIN_DISTRIB,
score_bins=SCORE_BINS,
keyword=None
)
random.shuffle(to_label_ids) # randomize to not prime users
to_label_ids = to_label_ids[:n]
ids_to_comments = utils.get_ids_to_comments()
to_label = [ids_to_comments[comment_id] for comment_id in to_label_ids]
context = {
"to_label": to_label,
}
return json.dumps(context)
########################################
# ROUTE: /GET_COMMENTS_TO_LABEL_TOPIC
@app.route("/get_comments_to_label_topic")
def get_comments_to_label_topic():
# Fetch examples to label
topic = request.args.get("topic")
to_label_ids = utils.create_example_sets(
n_label_per_bin=BIN_DISTRIB,
score_bins=SCORE_BINS,
keyword=None,
topic=topic,
)
random.shuffle(to_label_ids) # randomize to not prime users
ids_to_comments = utils.get_ids_to_comments()
to_label = [ids_to_comments[comment_id] for comment_id in to_label_ids]
context = {
"to_label": to_label,
}
return json.dumps(context)
########################################
# ROUTE: /GET_PERSONALIZED_MODEL
@app.route("/get_personalized_model")
def get_personalized_model(debug=DEBUG):
model_name = request.args.get("model_name")
ratings_json = request.args.get("ratings")
mode = request.args.get("mode")
user = request.args.get("user")
ratings = json.loads(ratings_json)
if debug:
print(ratings)
start = time.time()
utils.setup_user_model_dirs(user, model_name)
# Handle existing or new model cases
if mode == "view":
# Fetch prior model performance
mae, mse, rmse, avg_diff, ratings_prev = utils.fetch_existing_data(user, model_name)
elif mode == "train":
# Train model and cache predictions using new labels
print("get_personalized_model train")
mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, ratings, user)
if debug:
duration = time.time() - start
print("Time to train/cache:", duration)
perf_plot, mae_status = utils.plot_train_perf_results(user, model_name, mae)
perf_plot_json = perf_plot.to_json()
def round_metric(x):
return np.round(abs(x), 3)
results = {
"model_name": model_name,
"mae": round_metric(mae),
"mae_status": mae_status,
"mse": round_metric(mse),
"rmse": round_metric(rmse),
"avg_diff": round_metric(avg_diff),
"ratings_prev": ratings_prev,
"perf_plot_json": json.loads(perf_plot_json),
}
return json.dumps(results)
########################################
# ROUTE: /GET_PERSONALIZED_MODEL_TOPIC
@app.route("/get_personalized_model_topic")
def get_personalized_model_topic(debug=DEBUG):
model_name = request.args.get("model_name")
ratings_json = request.args.get("ratings")
user = request.args.get("user")
ratings = json.loads(ratings_json)
topic = request.args.get("topic")
if debug:
print(ratings)
start = time.time()
# Modify model name
model_name = f"{model_name}_{topic}"
utils.setup_user_model_dirs(user, model_name)
# Handle existing or new model cases
# Train model and cache predictions using new labels
if debug:
print("get_personalized_model_topic train")
mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, ratings, user, topic=topic)
if debug:
duration = time.time() - start
print("Time to train/cache:", duration)
results = {
"success": "success",
"ratings_prev": ratings_prev,
"new_model_name": model_name,
}
return json.dumps(results)
########################################
# ROUTE: /GET_REPORTS
@app.route("/get_reports")
def get_reports():
cur_user = request.args.get("cur_user")
scaffold_method = request.args.get("scaffold_method")
model = request.args.get("model")
topic_vis_method = request.args.get("topic_vis_method")
if topic_vis_method == "null":
topic_vis_method = "fp_fn"
# Load reports for current user from stored file
reports_file = utils.get_reports_file(cur_user, model)
if not os.path.isfile(reports_file):
if scaffold_method == "fixed":
reports = get_fixed_scaffold()
elif (scaffold_method == "personal" or scaffold_method == "personal_group" or scaffold_method == "personal_test"):
reports = get_personal_scaffold(cur_user, model, topic_vis_method)
elif scaffold_method == "prompts":
reports = get_prompts_scaffold()
elif scaffold_method == "tutorial":
reports = get_tutorial_scaffold()
else:
# Prepare empty report
reports = [
{
"title": "",
"error_type": "",
"evidence": [],
"text_entry": "",
"sep_selection": "",
"complete_status": False,
}
]
else:
# Load from pickle file
with open(reports_file, "rb") as f:
reports = json.load(f)
results = {
"reports": reports,
}
return json.dumps(results)
def get_fixed_scaffold():
return [
{
"title": "Topic: 6_jews_jew_jewish_rabbi",
"error_type": "System is under-sensitive",
"evidence": [],
"text_entry": "",
"sep_selection": "",
"complete_status": False,
},
{
"title": "Topic: 73_troll_trolls_trolling_spammers",
"error_type": "System is over-sensitive",
"evidence": [],
"text_entry": "",
"sep_selection": "",
"complete_status": False,
},
{
"title": "Topic: 66_mexicans_mexico_mexican_spanish",
"error_type": "System is under-sensitive",
"evidence": [],
"text_entry": "",
"sep_selection": "",
"complete_status": False,
},
{
"title": "Topic: 89_cowards_coward_cowardly_brave",
"error_type": "System is over-sensitive",
"evidence": [],
"text_entry": "",
"sep_selection": "",
"complete_status": False,
},
{
"title": "Topic: 63_disgusting_gross_toxic_thicc",
"error_type": "System is under-sensitive",
"evidence": [],
"text_entry": "",
"sep_selection": "",
"complete_status": False,
},
]
def get_empty_report(title, error_type):
return {
"title": f"Topic: {title}",
"error_type": error_type,
"evidence": [],
"text_entry": "",
"sep_selection": "",
"complete_status": False,
}
def get_tutorial_scaffold():
return [
{
"title": "Topic: 79_idiot_dumb_stupid_dumber",
"error_type": "System is over-sensitive",
"evidence": [],
"text_entry": "",
"sep_selection": "",
"complete_status": False,
},
]
def get_topic_errors(df, topic_vis_method, threshold=2):
topics = df["topic"].unique().tolist()
topic_errors = {}
for topic in topics:
t_df = df[df["topic"] == topic]
y_true = t_df["pred"].to_numpy() # Predicted user rating (treated as ground truth)
y_pred = t_df["rating_sys"].to_numpy() # System rating (which we're auditing)
if topic_vis_method == "mae":
t_err = mean_absolute_error(y_true, y_pred)
elif topic_vis_method == "mse":
t_err = mean_squared_error(y_true, y_pred)
elif topic_vis_method == "avg_diff":
t_err = np.mean(y_true - y_pred)
elif topic_vis_method == "fp_proportion":
y_true = [0 if rating < threshold else 1 for rating in y_true]
y_pred = [0 if rating < threshold else 1 for rating in y_pred]
try:
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
except:
tn, fp, fn, tp = [0, 0, 0, 0] # ignore; set error to 0
total = float(len(y_true))
t_err = fp / total
elif topic_vis_method == "fn_proportion":
y_true = [0 if rating < threshold else 1 for rating in y_true]
y_pred = [0 if rating < threshold else 1 for rating in y_pred]
try:
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
except:
tn, fp, fn, tp = [0, 0, 0, 0] # ignore; set error to 0
total = float(len(y_true))
t_err = fn / total
topic_errors[topic] = t_err
return topic_errors
def get_personal_scaffold(cur_user, model, topic_vis_method, n_topics=200, n=5, debug=DEBUG):
threshold = utils.get_toxic_threshold()
# Get topics with greatest amount of error
preds_file = utils.get_preds_file(cur_user, model)
with open(preds_file, "rb") as f:
preds_df = pickle.load(f)
preds_df_mod = preds_df[preds_df["user_id"] == cur_user].sort_values(by=["item_id"]).reset_index()
preds_df_mod = preds_df_mod[preds_df_mod["topic_id"] < n_topics]
if topic_vis_method == "median":
df = preds_df_mod.groupby(["topic", "user_id"]).median().reset_index()
elif topic_vis_method == "mean":
df = preds_df_mod.groupby(["topic", "user_id"]).mean().reset_index()
elif topic_vis_method == "fp_fn":
for error_type in ["fn_proportion", "fp_proportion"]:
topic_errors = get_topic_errors(preds_df_mod, error_type)
preds_df_mod[error_type] = [topic_errors[topic] for topic in preds_df_mod["topic"].tolist()]
df = preds_df_mod.groupby(["topic", "user_id"]).mean().reset_index()
else:
# Get error for each topic
topic_errors = get_topic_errors(preds_df_mod, topic_vis_method)
preds_df_mod[topic_vis_method] = [topic_errors[topic] for topic in preds_df_mod["topic"].tolist()]
df = preds_df_mod.groupby(["topic", "user_id"]).mean().reset_index()
# Get system error
junk_topics = ["53_maiareficco_kallystas_dyisisitmanila_tractorsazi", "-1_dude_bullshit_fight_ain"]
df = df[~df["topic"].isin(junk_topics)] # Exclude known "junk topics"
if topic_vis_method == "median" or topic_vis_method == "mean":
df["error_magnitude"] = [utils.get_error_magnitude(sys, user, threshold) for sys, user in zip(df["rating_sys"].tolist(), df["pred"].tolist())]
df["error_type"] = [utils.get_error_type_radio(sys, user, threshold) for sys, user in zip(df["rating_sys"].tolist(), df["pred"].tolist())]
df_under = df[df["error_type"] == "System is under-sensitive"]
df_under = df_under.sort_values(by=["error_magnitude"], ascending=False).head(n) # surface largest errors first
report_under = [get_empty_report(row["topic"], row["error_type"]) for _, row in df_under.iterrows()]
df_over = df[df["error_type"] == "System is over-sensitive"]
df_over = df_over.sort_values(by=["error_magnitude"], ascending=False).head(n) # surface largest errors first
report_over = [get_empty_report(row["topic"], row["error_type"]) for _, row in df_over.iterrows()]
# Set up reports
reports = (report_under + report_over)
random.shuffle(reports)
elif topic_vis_method == "fp_fn":
df_under = df.sort_values(by=["fn_proportion"], ascending=False).head(n)
df_under = df_under[df_under["fn_proportion"] > 0]
if debug:
print(df_under[["topic", "fn_proportion"]])
report_under = [get_empty_report(row["topic"], "System is under-sensitive") for _, row in df_under.iterrows()]
df_over = df.sort_values(by=["fp_proportion"], ascending=False).head(n)
df_over = df_over[df_over["fp_proportion"] > 0]
if debug:
print(df_over[["topic", "fp_proportion"]])
report_over = [get_empty_report(row["topic"], "System is over-sensitive") for _, row in df_over.iterrows()]
reports = (report_under + report_over)
random.shuffle(reports)
else:
df = df.sort_values(by=[topic_vis_method], ascending=False).head(n * 2)
df["error_type"] = [utils.get_error_type_radio(sys, user, threshold) for sys, user in zip(df["rating_sys"].tolist(), df["pred"].tolist())]
reports = [get_empty_report(row["topic"], row["error_type"]) for _, row in df.iterrows()]
return reports
def get_prompts_scaffold():
return [
{
"title": "Are there terms that are used in your identity group or community that tend to be flagged incorrectly as toxic?",
"error_type": "System is over-sensitive",
"evidence": [],
"text_entry": "",
"sep_selection": "",
"complete_status": False,
},
{
"title": "Are there terms that are used in your identity group or community that tend to be flagged incorrectly as non-toxic?",
"error_type": "System is under-sensitive",
"evidence": [],
"text_entry": "",
"sep_selection": "",
"complete_status": False,
},
{
"title": "Are there certain ways that your community tends to be targeted by outsiders?",
"error_type": "",
"evidence": [],
"text_entry": "",
"sep_selection": "",
"complete_status": False,
},
{
"title": "Are there other communities whose content should be very similar to your community's? Verify that this content is treated similarly by the system.",
"error_type": "",
"evidence": [],
"text_entry": "",
"sep_selection": "",
"complete_status": False,
},
{
"title": "Are there ways that you've seen individuals in your community actively try to thwart the rules of automated content moderation systems? Check whether these strategies work here.",
"error_type": "",
"evidence": [],
"text_entry": "",
"sep_selection": "",
"complete_status": False,
},
]
# Filter to eligible reports: those that have been marked complete and include at least one piece of evidence.
def get_eligible_reports(reports):
eligible_reports = []
for r in reports:
if (r["complete_status"] == True) and (len(r["evidence"]) > 0):
eligible_reports.append(r)
return eligible_reports
# Submit all reports to AVID
# Logs the responses
def submit_reports_to_AVID(reports, cur_user, name, email, debug=DEBUG):
# Set up the connection to AVID
root = os.environ.get('AVID_API_URL')
api_key = os.environ.get('AVID_API_KEY')
key = {"Authorization": api_key}
reports = get_eligible_reports(reports)
if debug:
print("Num eligible reports:", len(reports))
for r in reports:
sep_selection = r["sep_selection"]
new_report = utils.convert_indie_label_json_to_avid_json(r, cur_user, name, email, sep_selection)
url = root + "submit"
response = requests.post(url, json=json.loads(new_report), headers=key) # The loads ensures type compliance
uuid = response.json()
if debug:
print("Report", new_report)
print("AVID API response:", response, uuid)
########################################
# ROUTE: /SAVE_REPORTS
@app.route("/save_reports")
def save_reports(debug=DEBUG):
cur_user = request.args.get("cur_user")
reports_json = request.args.get("reports")
reports = json.loads(reports_json)
model = request.args.get("model")
# Save reports for current user to file
reports_file = utils.get_reports_file(cur_user, model)
with open(reports_file, "w", encoding ='utf8') as f:
json.dump(reports, f)
results = {
"status": "success",
}
if debug:
print(results)
return json.dumps(results)
########################################
# ROUTE: /SUBMIT_AVID_REPORT
@app.route("/submit_avid_report")
def submit_avid_report():
cur_user = request.args.get("cur_user")
name = request.args.get("name")
email = request.args.get("email")
reports_json = request.args.get("reports")
reports = json.loads(reports_json)
# Submit reports to AVID
submit_reports_to_AVID(reports, cur_user, name, email)
results = {
"status": "success",
}
return json.dumps(results)
########################################
# ROUTE: /GET_EXPLORE_EXAMPLES
@app.route("/get_explore_examples")
def get_explore_examples():
threshold = utils.get_toxic_threshold()
n_examples = int(request.args.get("n_examples"))
# Get sample of examples
df = utils.get_explore_df(n_examples, threshold)
ex_json = df.to_json(orient="records")
results = {
"examples": ex_json,
}
return json.dumps(results)
if __name__ == "__main__":
app.run(debug=True, port=5001, host='0.0.0.0')