Spaces:
Runtime error
Runtime error
Michelle Lam
commited on
Commit
·
da6aa93
1
Parent(s):
c302134
Adds comments on key utils functions; preliminary streamlining of cluster results plot
Browse files- audit_utils.py +25 -18
- server.py +8 -2
audit_utils.py
CHANGED
@@ -431,6 +431,7 @@ def plot_class_cond_results(preds_df, breakdown_axis, perf_metric, other_ids, so
|
|
431 |
|
432 |
return combined
|
433 |
|
|
|
434 |
def show_overall_perf(variant, error_type, cur_user, threshold=TOXIC_THRESHOLD, breakdown_axis=None, topic_vis_method="median"):
|
435 |
# Your perf (calculate using model and testset)
|
436 |
breakdown_axis = readable_to_internal[breakdown_axis]
|
@@ -447,7 +448,7 @@ def show_overall_perf(variant, error_type, cur_user, threshold=TOXIC_THRESHOLD,
|
|
447 |
topic_overview_plot_json = json.load(f)
|
448 |
else:
|
449 |
preds_df_mod = preds_df.merge(comments_grouped_full_topic_cat, on="item_id", how="left", suffixes=('_', '_avg'))
|
450 |
-
if topic_vis_method == "median":
|
451 |
preds_df_mod_grp = preds_df_mod.groupby(["topic_", "user_id"]).median()
|
452 |
elif topic_vis_method == "mean":
|
453 |
preds_df_mod_grp = preds_df_mod.groupby(["topic_", "user_id"]).mean()
|
@@ -737,7 +738,7 @@ def train_updated_model(model_name, last_label_i, ratings, user, top_n=20, topic
|
|
737 |
|
738 |
mae, mse, rmse, avg_diff = user_perf_metrics[model_name]
|
739 |
|
740 |
-
cur_preds_df = get_preds_df(cur_model, ["A"], sys_eval_df=ratings_df_full
|
741 |
|
742 |
# Save this batch of labels
|
743 |
with open(os.path.join(module_dir, label_dir, f"{last_label_i + 1}.pkl"), "wb") as f:
|
@@ -827,7 +828,12 @@ def get_predictions_by_user_and_item(predictions):
|
|
827 |
user_item_preds[(uid, iid)] = est
|
828 |
return user_item_preds
|
829 |
|
830 |
-
|
|
|
|
|
|
|
|
|
|
|
831 |
# Prep dataframe for all predictions we'd like to request
|
832 |
start = time.time()
|
833 |
sys_eval_comment_ids = sys_eval_df.item_id.unique().tolist()
|
@@ -861,9 +867,14 @@ def get_preds_df(model, user_ids, orig_df=ratings_df_full, avg_ratings_df=commen
|
|
861 |
|
862 |
return df
|
863 |
|
|
|
|
|
|
|
|
|
|
|
864 |
def train_user_model(ratings_df, train_df=train_df, model_eval_df=model_eval_df, train_frac=0.75, model_type="SVD", sim_type=None, user_based=True):
|
865 |
# Sample from shuffled labeled dataframe and add batch to train set; specified set size to model_eval set
|
866 |
-
labeled = ratings_df.sample(frac=1)
|
867 |
batch_size = math.floor(len(labeled) * train_frac)
|
868 |
labeled_train = labeled[:batch_size]
|
869 |
labeled_model_eval = labeled[batch_size:]
|
@@ -876,6 +887,10 @@ def train_user_model(ratings_df, train_df=train_df, model_eval_df=model_eval_df,
|
|
876 |
|
877 |
return model, perf, labeled_train, labeled_model_eval
|
878 |
|
|
|
|
|
|
|
|
|
879 |
def train_model(train_df, model_eval_df, model_type="SVD", sim_type=None, user_based=True):
|
880 |
# Train model
|
881 |
reader = Reader(rating_scale=(0, 4))
|
@@ -1126,6 +1141,7 @@ def get_comment_url(row):
|
|
1126 |
def get_topic_url(row):
|
1127 |
return f"#{row['topic_']}/#topic"
|
1128 |
|
|
|
1129 |
def plot_overall_vis(preds_df, error_type, cur_user, cur_model, n_topics=None, bins=VIS_BINS, threshold=TOXIC_THRESHOLD, bin_step=0.05):
|
1130 |
df = preds_df.copy().reset_index()
|
1131 |
|
@@ -1242,22 +1258,15 @@ def plot_overall_vis(preds_df, error_type, cur_user, cur_model, n_topics=None, b
|
|
1242 |
|
1243 |
return plot
|
1244 |
|
1245 |
-
|
1246 |
-
|
1247 |
-
|
1248 |
-
if use_model:
|
1249 |
-
return plot_overall_vis_cluster(preds_df_mod, error_type=error_type, n_comments=500, threshold=threshold)
|
1250 |
-
else:
|
1251 |
-
return plot_overall_vis_cluster2(preds_df_mod, error_type=error_type, n_comments=500, threshold=threshold)
|
1252 |
-
|
1253 |
-
def plot_overall_vis_cluster2(preds_df, error_type, n_comments=None, bins=VIS_BINS, threshold=TOXIC_THRESHOLD, bin_step=0.05):
|
1254 |
df = preds_df.copy().reset_index()
|
1255 |
|
1256 |
df["vis_pred_bin"], out_bins = pd.cut(df["rating"], bins, labels=VIS_BINS_LABELS, retbins=True)
|
1257 |
df = df[df["user_id"] == "A"].sort_values(by=["rating"]).reset_index()
|
1258 |
df["system_label"] = [("toxic" if r > threshold else "non-toxic") for r in df["rating"].tolist()]
|
1259 |
df["key"] = [get_key_no_model(sys, threshold) for sys in df["rating"].tolist()]
|
1260 |
-
print("len(df)", len(df)) # always 0 for some reason (from keyword search)
|
1261 |
df["category"] = df.apply(lambda row: get_category(row), axis=1)
|
1262 |
df["url"] = df.apply(lambda row: get_comment_url(row), axis=1)
|
1263 |
|
@@ -1345,17 +1354,15 @@ def plot_overall_vis_cluster2(preds_df, error_type, n_comments=None, bins=VIS_BI
|
|
1345 |
final_plot = (bkgd + annotation + chart + rule).properties(height=(plot_dim_height), width=plot_dim_width).resolve_scale(color='independent').to_json()
|
1346 |
|
1347 |
return final_plot, df
|
1348 |
-
|
|
|
1349 |
def plot_overall_vis_cluster(preds_df, error_type, n_comments=None, bins=VIS_BINS, threshold=TOXIC_THRESHOLD, bin_step=0.05):
|
1350 |
df = preds_df.copy().reset_index(drop=True)
|
1351 |
-
# df = df[df["topic_"] == topic]
|
1352 |
|
1353 |
df["vis_pred_bin"], out_bins = pd.cut(df["pred"], bins, labels=VIS_BINS_LABELS, retbins=True)
|
1354 |
df = df[df["user_id"] == "A"].sort_values(by=["rating"]).reset_index(drop=True)
|
1355 |
df["system_label"] = [("toxic" if r > threshold else "non-toxic") for r in df["rating"].tolist()]
|
1356 |
df["key"] = [get_key(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
|
1357 |
-
print("len(df)", len(df)) # always 0 for some reason (from keyword search)
|
1358 |
-
# print("columns", df.columns)
|
1359 |
df["category"] = df.apply(lambda row: get_category(row), axis=1)
|
1360 |
df["url"] = df.apply(lambda row: get_comment_url(row), axis=1)
|
1361 |
|
|
|
431 |
|
432 |
return combined
|
433 |
|
434 |
+
# Generates the summary plot across all topics for the user
|
435 |
def show_overall_perf(variant, error_type, cur_user, threshold=TOXIC_THRESHOLD, breakdown_axis=None, topic_vis_method="median"):
|
436 |
# Your perf (calculate using model and testset)
|
437 |
breakdown_axis = readable_to_internal[breakdown_axis]
|
|
|
448 |
topic_overview_plot_json = json.load(f)
|
449 |
else:
|
450 |
preds_df_mod = preds_df.merge(comments_grouped_full_topic_cat, on="item_id", how="left", suffixes=('_', '_avg'))
|
451 |
+
if topic_vis_method == "median": # Default
|
452 |
preds_df_mod_grp = preds_df_mod.groupby(["topic_", "user_id"]).median()
|
453 |
elif topic_vis_method == "mean":
|
454 |
preds_df_mod_grp = preds_df_mod.groupby(["topic_", "user_id"]).mean()
|
|
|
738 |
|
739 |
mae, mse, rmse, avg_diff = user_perf_metrics[model_name]
|
740 |
|
741 |
+
cur_preds_df = get_preds_df(cur_model, ["A"], sys_eval_df=ratings_df_full) # Just get results for user
|
742 |
|
743 |
# Save this batch of labels
|
744 |
with open(os.path.join(module_dir, label_dir, f"{last_label_i + 1}.pkl"), "wb") as f:
|
|
|
828 |
user_item_preds[(uid, iid)] = est
|
829 |
return user_item_preds
|
830 |
|
831 |
+
# Pre-computes predictions for the provided model and specified users on the system-eval dataset
|
832 |
+
# - model: trained model
|
833 |
+
# - user_ids: list of user IDs to compute predictions for
|
834 |
+
# - avg_ratings_df: dataframe of average ratings for each comment (pre-computed)
|
835 |
+
# - sys_eval_df: dataframe of system eval labels (pre-computed)
|
836 |
+
def get_preds_df(model, user_ids, avg_ratings_df=comments_grouped_full_topic_cat, sys_eval_df=sys_eval_df, bins=BINS):
|
837 |
# Prep dataframe for all predictions we'd like to request
|
838 |
start = time.time()
|
839 |
sys_eval_comment_ids = sys_eval_df.item_id.unique().tolist()
|
|
|
867 |
|
868 |
return df
|
869 |
|
870 |
+
# Given the full set of ratings, trains the specified model type and evaluates on the model eval set
|
871 |
+
# - ratings_df: dataframe of all ratings
|
872 |
+
# - train_df: dataframe of training labels
|
873 |
+
# - model_eval_df: dataframe of model eval labels (validation set)
|
874 |
+
# - train_frac: fraction of ratings to use for training
|
875 |
def train_user_model(ratings_df, train_df=train_df, model_eval_df=model_eval_df, train_frac=0.75, model_type="SVD", sim_type=None, user_based=True):
|
876 |
# Sample from shuffled labeled dataframe and add batch to train set; specified set size to model_eval set
|
877 |
+
labeled = ratings_df.sample(frac=1) # Shuffle the data
|
878 |
batch_size = math.floor(len(labeled) * train_frac)
|
879 |
labeled_train = labeled[:batch_size]
|
880 |
labeled_model_eval = labeled[batch_size:]
|
|
|
887 |
|
888 |
return model, perf, labeled_train, labeled_model_eval
|
889 |
|
890 |
+
# Given a set of labels split into training and validation (model_eval), trains the specified model type on the training labels and evaluates on the model_eval labels
|
891 |
+
# - train_df: dataframe of training labels
|
892 |
+
# - model_eval_df: dataframe of model eval labels (validation set)
|
893 |
+
# - model_type: type of model to train
|
894 |
def train_model(train_df, model_eval_df, model_type="SVD", sim_type=None, user_based=True):
|
895 |
# Train model
|
896 |
reader = Reader(rating_scale=(0, 4))
|
|
|
1141 |
def get_topic_url(row):
|
1142 |
return f"#{row['topic_']}/#topic"
|
1143 |
|
1144 |
+
# Plots overall results histogram (each block is a topic)
|
1145 |
def plot_overall_vis(preds_df, error_type, cur_user, cur_model, n_topics=None, bins=VIS_BINS, threshold=TOXIC_THRESHOLD, bin_step=0.05):
|
1146 |
df = preds_df.copy().reset_index()
|
1147 |
|
|
|
1258 |
|
1259 |
return plot
|
1260 |
|
1261 |
+
# Plots cluster results histogram (each block is a comment), but *without* a model
|
1262 |
+
# as a point of reference (in contrast to plot_overall_vis_cluster)
|
1263 |
+
def plot_overall_vis_cluster_no_model(preds_df, n_comments=None, bins=VIS_BINS, threshold=TOXIC_THRESHOLD, bin_step=0.05):
|
|
|
|
|
|
|
|
|
|
|
|
|
1264 |
df = preds_df.copy().reset_index()
|
1265 |
|
1266 |
df["vis_pred_bin"], out_bins = pd.cut(df["rating"], bins, labels=VIS_BINS_LABELS, retbins=True)
|
1267 |
df = df[df["user_id"] == "A"].sort_values(by=["rating"]).reset_index()
|
1268 |
df["system_label"] = [("toxic" if r > threshold else "non-toxic") for r in df["rating"].tolist()]
|
1269 |
df["key"] = [get_key_no_model(sys, threshold) for sys in df["rating"].tolist()]
|
|
|
1270 |
df["category"] = df.apply(lambda row: get_category(row), axis=1)
|
1271 |
df["url"] = df.apply(lambda row: get_comment_url(row), axis=1)
|
1272 |
|
|
|
1354 |
final_plot = (bkgd + annotation + chart + rule).properties(height=(plot_dim_height), width=plot_dim_width).resolve_scale(color='independent').to_json()
|
1355 |
|
1356 |
return final_plot, df
|
1357 |
+
|
1358 |
+
# Plots cluster results histogram (each block is a comment) *with* a model as a point of reference
|
1359 |
def plot_overall_vis_cluster(preds_df, error_type, n_comments=None, bins=VIS_BINS, threshold=TOXIC_THRESHOLD, bin_step=0.05):
|
1360 |
df = preds_df.copy().reset_index(drop=True)
|
|
|
1361 |
|
1362 |
df["vis_pred_bin"], out_bins = pd.cut(df["pred"], bins, labels=VIS_BINS_LABELS, retbins=True)
|
1363 |
df = df[df["user_id"] == "A"].sort_values(by=["rating"]).reset_index(drop=True)
|
1364 |
df["system_label"] = [("toxic" if r > threshold else "non-toxic") for r in df["rating"].tolist()]
|
1365 |
df["key"] = [get_key(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
|
|
|
|
|
1366 |
df["category"] = df.apply(lambda row: get_category(row), axis=1)
|
1367 |
df["url"] = df.apply(lambda row: get_comment_url(row), axis=1)
|
1368 |
|
server.py
CHANGED
@@ -220,8 +220,14 @@ def get_cluster_results():
|
|
220 |
if (scaffold_method == "personal_cluster") and (os.path.isfile(personal_cluster_file)):
|
221 |
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster(topic_df, error_type=error_type, n_comments=500)
|
222 |
else:
|
223 |
-
#
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
cluster_comments = utils.get_cluster_comments(sampled_df,error_type=error_type, num_examples=n_examples, use_model=use_model) # New version of cluster comment table
|
227 |
|
|
|
220 |
if (scaffold_method == "personal_cluster") and (os.path.isfile(personal_cluster_file)):
|
221 |
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster(topic_df, error_type=error_type, n_comments=500)
|
222 |
else:
|
223 |
+
# Default case
|
224 |
+
topic_df_mod = topic_df.merge(comments_grouped_full_topic_cat, on="item_id", how="left", suffixes=('_', '_avg'))
|
225 |
+
if use_model:
|
226 |
+
# Display results with the model as a reference point
|
227 |
+
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster(topic_df_mod, error_type=error_type, n_comments=500)
|
228 |
+
else:
|
229 |
+
# Display results without a model
|
230 |
+
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster_no_model(topic_df_mod, n_comments=500)
|
231 |
|
232 |
cluster_comments = utils.get_cluster_comments(sampled_df,error_type=error_type, num_examples=n_examples, use_model=use_model) # New version of cluster comment table
|
233 |
|