from flask import Flask, send_from_directory from flask import request import random import json import numpy as np import matplotlib.pyplot as plt import pandas as pd import pickle import os from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import confusion_matrix import math import altair as alt import matplotlib.pyplot as plt import time import friendlywords as fw import audit_utils as utils import requests app = Flask(__name__) DEBUG = False # Debug flag for development; set to False for production # Path for our main Svelte page @app.route("/") def base(): return send_from_directory('indie_label_svelte/public', 'index.html') # Path for all the static files (compiled JS/CSS, etc.) @app.route("/") def home(path): return send_from_directory('indie_label_svelte/public', path) ######################################## # ROUTE: /AUDIT_SETTINGS @app.route("/audit_settings") def audit_settings(debug=DEBUG): # Fetch page content user = request.args.get("user") scaffold_method = request.args.get("scaffold_method") # Assign user ID if none is provided (default case) if user == "null": # Generate random two-word user ID user = fw.generate(2, separator="_") user_models = utils.get_user_model_names(user) grp_models = [m for m in user_models if m.startswith(f"model_{user}_group_")] clusters = utils.get_unique_topics() if len(user_models) > 2 and scaffold_method != "tutorial" and user != "DemoUser": # Highlight topics that have been tuned tuned_clusters = [m.lstrip(f"model_{user}_") for m in user_models if (m != f"model_{user}" and not m.startswith(f"model_{user}_group_"))] other_clusters = [c for c in clusters if c not in tuned_clusters] tuned_options = { "label": "Topics with tuned models", "options": [{"value": i, "text": cluster} for i, cluster in enumerate(tuned_clusters)], } other_options = { "label": "All other topics", "options": [{"value": i, "text": cluster} for i, cluster in enumerate(other_clusters)], } clusters_options = [tuned_options, other_options] else: clusters_options = [{ "label": "All auto-generated topics", "options": [{"value": i, "text": cluster} for i, cluster in enumerate(clusters)], },] clusters_for_tuning = utils.get_large_clusters(min_n=150) clusters_for_tuning_options = [{"value": i, "text": cluster} for i, cluster in enumerate(clusters_for_tuning)] # Format for Svelecte UI element context = { "personalized_models": user_models, "personalized_model_grp": grp_models, "perf_metrics": ["Average rating difference", "Mean Absolute Error (MAE)", "Root Mean Squared Error (RMSE)", "Mean Squared Error (MSE)"], "clusters": clusters_options, "clusters_for_tuning": clusters_for_tuning_options, "user": user, } return json.dumps(context) ######################################## # ROUTE: /GET_AUDIT @app.route("/get_audit") def get_audit(): pers_model = request.args.get("pers_model") error_type = request.args.get("error_type") cur_user = request.args.get("cur_user") topic_vis_method = request.args.get("topic_vis_method") if topic_vis_method == "null": topic_vis_method = "median" if pers_model == "" or pers_model == "null" or pers_model == "undefined": overall_perf = None else: overall_perf = utils.show_overall_perf( cur_model=pers_model, error_type=error_type, cur_user=cur_user, topic_vis_method=topic_vis_method, ) results = { "overall_perf": overall_perf, } return json.dumps(results) ######################################## # ROUTE: /GET_CLUSTER_RESULTS @app.route("/get_cluster_results") def get_cluster_results(debug=DEBUG): pers_model = request.args.get("pers_model") cur_user = request.args.get("cur_user") cluster = request.args.get("cluster") topic_df_ids = request.args.getlist("topic_df_ids") topic_df_ids = [int(val) for val in topic_df_ids[0].split(",") if val != ""] search_type = request.args.get("search_type") keyword = request.args.get("keyword") error_type = request.args.get("error_type") use_model = request.args.get("use_model") == "true" if debug: print(f"get_cluster_results using model {pers_model}") # Prepare cluster df (topic_df) topic_df = None preds_file = utils.get_preds_file(cur_user, pers_model) with open(preds_file, "rb") as f: topic_df = pickle.load(f) if search_type == "cluster": # Display examples with comment, your pred, and other users' pred topic_df = topic_df[(topic_df["topic"] == cluster) | (topic_df["item_id"].isin(topic_df_ids))] elif search_type == "keyword": topic_df = topic_df[(topic_df["comment"].str.contains(keyword, case=False, regex=False)) | (topic_df["item_id"].isin(topic_df_ids))] topic_df = topic_df.drop_duplicates() if debug: print("len topic_df", len(topic_df)) # Handle empty results if len(topic_df) == 0: results = { "user_perf_rounded": None, "user_direction": None, "other_perf_rounded": None, "other_direction": None, "n_other_users": None, "cluster_examples": None, "odds_ratio": None, "odds_ratio_explanation": None, "topic_df_ids": [], "cluster_overview_plot_json": None, "cluster_comments": None, } return results topic_df_ids = topic_df["item_id"].unique().tolist() # Prepare overview plot for the cluster if use_model: # Display results with the model as a reference point cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster(cur_user, topic_df, error_type=error_type, n_comments=500) else: # Display results without a model cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster_no_model(cur_user, topic_df, n_comments=500) cluster_comments = utils.get_cluster_comments(sampled_df,error_type=error_type, use_model=use_model) # New version of cluster comment table results = { "topic_df_ids": topic_df_ids, "cluster_overview_plot_json": json.loads(cluster_overview_plot_json), "cluster_comments": cluster_comments.to_json(orient="records"), } return json.dumps(results) ######################################## # ROUTE: /GET_GROUP_SIZE @app.route("/get_group_size") def get_group_size(): # Fetch info for initial labeling component sel_gender = request.args.get("sel_gender") sel_pol = request.args.get("sel_pol") sel_relig = request.args.get("sel_relig") sel_race = request.args.get("sel_race") sel_lgbtq = request.args.get("sel_lgbtq") if sel_race != "": sel_race = sel_race.split(",") _, group_size = utils.get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq) context = { "group_size": group_size, } return json.dumps(context) ######################################## # ROUTE: /GET_GROUP_MODEL @app.route("/get_group_model") def get_group_model(debug=DEBUG): # Fetch info for initial labeling component model_name = request.args.get("model_name") user = request.args.get("user") sel_gender = request.args.get("sel_gender") sel_pol = request.args.get("sel_pol") sel_relig = request.args.get("sel_relig") sel_lgbtq = request.args.get("sel_lgbtq") sel_race_orig = request.args.get("sel_race") if sel_race_orig != "": sel_race = sel_race_orig.split(",") else: sel_race = "" start = time.time() grp_df, group_size = utils.get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq) grp_ids = grp_df["worker_id"].tolist() ratings_grp = utils.get_grp_model_labels( n_label_per_bin=BIN_DISTRIB, score_bins=SCORE_BINS, grp_ids=grp_ids, ) # Modify model name model_name = f"{model_name}_group_gender{sel_gender}_relig{sel_relig}_pol{sel_pol}_race{sel_race_orig}_lgbtq_{sel_lgbtq}" utils.setup_user_model_dirs(user, model_name) # Train group model mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, ratings_grp, user) duration = time.time() - start if debug: print("Time to train/cache:", duration) context = { "group_size": group_size, "mae": mae, } return json.dumps(context) ######################################## # ROUTE: /GET_LABELING @app.route("/get_labeling") def get_labeling(): # Fetch info for initial labeling component user = request.args.get("user") clusters_for_tuning = utils.get_large_clusters(min_n=150) clusters_for_tuning_options = [{"value": i, "text": cluster} for i, cluster in enumerate(clusters_for_tuning)] # Format for Svelecte UI element model_name_suggestion = f"my_model" context = { "personalized_models": utils.get_user_model_names(user), "model_name_suggestion": model_name_suggestion, "clusters_for_tuning": clusters_for_tuning_options, } return json.dumps(context) ######################################## # ROUTE: /GET_COMMENTS_TO_LABEL if DEBUG: BIN_DISTRIB = [1, 2, 4, 2, 1] # 10 comments else: BIN_DISTRIB = [2, 4, 8, 4, 2] # 20 comments SCORE_BINS = [(0.0, 0.5), (0.5, 1.5), (1.5, 2.5), (2.5, 3.5), (3.5, 4.01)] @app.route("/get_comments_to_label") def get_comments_to_label(): n = int(request.args.get("n")) # Fetch examples to label to_label_ids = utils.create_example_sets( n_label_per_bin=BIN_DISTRIB, score_bins=SCORE_BINS, keyword=None ) random.shuffle(to_label_ids) # randomize to not prime users to_label_ids = to_label_ids[:n] ids_to_comments = utils.get_ids_to_comments() to_label = [ids_to_comments[comment_id] for comment_id in to_label_ids] context = { "to_label": to_label, } return json.dumps(context) ######################################## # ROUTE: /GET_COMMENTS_TO_LABEL_TOPIC @app.route("/get_comments_to_label_topic") def get_comments_to_label_topic(): # Fetch examples to label topic = request.args.get("topic") to_label_ids = utils.create_example_sets( n_label_per_bin=BIN_DISTRIB, score_bins=SCORE_BINS, keyword=None, topic=topic, ) random.shuffle(to_label_ids) # randomize to not prime users ids_to_comments = utils.get_ids_to_comments() to_label = [ids_to_comments[comment_id] for comment_id in to_label_ids] context = { "to_label": to_label, } return json.dumps(context) ######################################## # ROUTE: /GET_PERSONALIZED_MODEL @app.route("/get_personalized_model") def get_personalized_model(debug=DEBUG): model_name = request.args.get("model_name") ratings_json = request.args.get("ratings") mode = request.args.get("mode") user = request.args.get("user") ratings = json.loads(ratings_json) if debug: print(ratings) start = time.time() utils.setup_user_model_dirs(user, model_name) # Handle existing or new model cases if mode == "view": # Fetch prior model performance mae, mse, rmse, avg_diff, ratings_prev = utils.fetch_existing_data(user, model_name) elif mode == "train": # Train model and cache predictions using new labels print("get_personalized_model train") mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, ratings, user) if debug: duration = time.time() - start print("Time to train/cache:", duration) perf_plot, mae_status = utils.plot_train_perf_results(user, model_name, mae) perf_plot_json = perf_plot.to_json() def round_metric(x): return np.round(abs(x), 3) results = { "model_name": model_name, "mae": round_metric(mae), "mae_status": mae_status, "mse": round_metric(mse), "rmse": round_metric(rmse), "avg_diff": round_metric(avg_diff), "ratings_prev": ratings_prev, "perf_plot_json": json.loads(perf_plot_json), } return json.dumps(results) ######################################## # ROUTE: /GET_PERSONALIZED_MODEL_TOPIC @app.route("/get_personalized_model_topic") def get_personalized_model_topic(debug=DEBUG): model_name = request.args.get("model_name") ratings_json = request.args.get("ratings") user = request.args.get("user") ratings = json.loads(ratings_json) topic = request.args.get("topic") if debug: print(ratings) start = time.time() # Modify model name model_name = f"{model_name}_{topic}" utils.setup_user_model_dirs(user, model_name) # Handle existing or new model cases # Train model and cache predictions using new labels if debug: print("get_personalized_model_topic train") mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, ratings, user, topic=topic) if debug: duration = time.time() - start print("Time to train/cache:", duration) results = { "success": "success", "ratings_prev": ratings_prev, "new_model_name": model_name, } return json.dumps(results) ######################################## # ROUTE: /GET_REPORTS @app.route("/get_reports") def get_reports(): cur_user = request.args.get("cur_user") scaffold_method = request.args.get("scaffold_method") model = request.args.get("model") topic_vis_method = request.args.get("topic_vis_method") if topic_vis_method == "null": topic_vis_method = "fp_fn" # Load reports for current user from stored file reports_file = utils.get_reports_file(cur_user, model) if not os.path.isfile(reports_file): if scaffold_method == "fixed": reports = get_fixed_scaffold() elif (scaffold_method == "personal" or scaffold_method == "personal_group" or scaffold_method == "personal_test"): reports = get_personal_scaffold(cur_user, model, topic_vis_method) elif scaffold_method == "prompts": reports = get_prompts_scaffold() elif scaffold_method == "tutorial": reports = get_tutorial_scaffold() else: # Prepare empty report reports = [ { "title": "", "error_type": "", "evidence": [], "text_entry": "", "complete_status": False, } ] else: # Load from pickle file with open(reports_file, "rb") as f: reports = json.load(f) results = { "reports": reports, } return json.dumps(results) def get_fixed_scaffold(): return [ { "title": "Topic: 6_jews_jew_jewish_rabbi", "error_type": "System is under-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Topic: 73_troll_trolls_trolling_spammers", "error_type": "System is over-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Topic: 66_mexicans_mexico_mexican_spanish", "error_type": "System is under-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Topic: 89_cowards_coward_cowardly_brave", "error_type": "System is over-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Topic: 63_disgusting_gross_toxic_thicc", "error_type": "System is under-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, ] def get_empty_report(title, error_type): return { "title": f"Topic: {title}", "error_type": error_type, "evidence": [], "text_entry": "", "complete_status": False, } def get_tutorial_scaffold(): return [ { "title": "Topic: 79_idiot_dumb_stupid_dumber", "error_type": "System is over-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, ] def get_topic_errors(df, topic_vis_method, threshold=2): topics = df["topic"].unique().tolist() topic_errors = {} for topic in topics: t_df = df[df["topic"] == topic] y_true = t_df["pred"].to_numpy() # Predicted user rating (treated as ground truth) y_pred = t_df["rating_sys"].to_numpy() # System rating (which we're auditing) if topic_vis_method == "mae": t_err = mean_absolute_error(y_true, y_pred) elif topic_vis_method == "mse": t_err = mean_squared_error(y_true, y_pred) elif topic_vis_method == "avg_diff": t_err = np.mean(y_true - y_pred) elif topic_vis_method == "fp_proportion": y_true = [0 if rating < threshold else 1 for rating in y_true] y_pred = [0 if rating < threshold else 1 for rating in y_pred] try: tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() except: tn, fp, fn, tp = [0, 0, 0, 0] # ignore; set error to 0 total = float(len(y_true)) t_err = fp / total elif topic_vis_method == "fn_proportion": y_true = [0 if rating < threshold else 1 for rating in y_true] y_pred = [0 if rating < threshold else 1 for rating in y_pred] try: tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() except: tn, fp, fn, tp = [0, 0, 0, 0] # ignore; set error to 0 total = float(len(y_true)) t_err = fn / total topic_errors[topic] = t_err return topic_errors def get_personal_scaffold(cur_user, model, topic_vis_method, n_topics=200, n=5, debug=DEBUG): threshold = utils.get_toxic_threshold() # Get topics with greatest amount of error preds_file = utils.get_preds_file(cur_user, model) with open(preds_file, "rb") as f: preds_df = pickle.load(f) preds_df_mod = preds_df[preds_df["user_id"] == cur_user].sort_values(by=["item_id"]).reset_index() preds_df_mod = preds_df_mod[preds_df_mod["topic_id"] < n_topics] if topic_vis_method == "median": df = preds_df_mod.groupby(["topic", "user_id"]).median().reset_index() elif topic_vis_method == "mean": df = preds_df_mod.groupby(["topic", "user_id"]).mean().reset_index() elif topic_vis_method == "fp_fn": for error_type in ["fn_proportion", "fp_proportion"]: topic_errors = get_topic_errors(preds_df_mod, error_type) preds_df_mod[error_type] = [topic_errors[topic] for topic in preds_df_mod["topic"].tolist()] df = preds_df_mod.groupby(["topic", "user_id"]).mean().reset_index() else: # Get error for each topic topic_errors = get_topic_errors(preds_df_mod, topic_vis_method) preds_df_mod[topic_vis_method] = [topic_errors[topic] for topic in preds_df_mod["topic"].tolist()] df = preds_df_mod.groupby(["topic", "user_id"]).mean().reset_index() # Get system error junk_topics = ["53_maiareficco_kallystas_dyisisitmanila_tractorsazi", "-1_dude_bullshit_fight_ain"] df = df[~df["topic"].isin(junk_topics)] # Exclude known "junk topics" if topic_vis_method == "median" or topic_vis_method == "mean": df["error_magnitude"] = [utils.get_error_magnitude(sys, user, threshold) for sys, user in zip(df["rating_sys"].tolist(), df["pred"].tolist())] df["error_type"] = [utils.get_error_type_radio(sys, user, threshold) for sys, user in zip(df["rating_sys"].tolist(), df["pred"].tolist())] df_under = df[df["error_type"] == "System is under-sensitive"] df_under = df_under.sort_values(by=["error_magnitude"], ascending=False).head(n) # surface largest errors first report_under = [get_empty_report(row["topic"], row["error_type"]) for _, row in df_under.iterrows()] df_over = df[df["error_type"] == "System is over-sensitive"] df_over = df_over.sort_values(by=["error_magnitude"], ascending=False).head(n) # surface largest errors first report_over = [get_empty_report(row["topic"], row["error_type"]) for _, row in df_over.iterrows()] # Set up reports reports = (report_under + report_over) random.shuffle(reports) elif topic_vis_method == "fp_fn": df_under = df.sort_values(by=["fn_proportion"], ascending=False).head(n) df_under = df_under[df_under["fn_proportion"] > 0] if debug: print(df_under[["topic", "fn_proportion"]]) report_under = [get_empty_report(row["topic"], "System is under-sensitive") for _, row in df_under.iterrows()] df_over = df.sort_values(by=["fp_proportion"], ascending=False).head(n) df_over = df_over[df_over["fp_proportion"] > 0] if debug: print(df_over[["topic", "fp_proportion"]]) report_over = [get_empty_report(row["topic"], "System is over-sensitive") for _, row in df_over.iterrows()] reports = (report_under + report_over) random.shuffle(reports) else: df = df.sort_values(by=[topic_vis_method], ascending=False).head(n * 2) df["error_type"] = [utils.get_error_type_radio(sys, user, threshold) for sys, user in zip(df["rating_sys"].tolist(), df["pred"].tolist())] reports = [get_empty_report(row["topic"], row["error_type"]) for _, row in df.iterrows()] return reports def get_prompts_scaffold(): return [ { "title": "Are there terms that are used in your identity group or community that tend to be flagged incorrectly as toxic?", "error_type": "System is over-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Are there terms that are used in your identity group or community that tend to be flagged incorrectly as non-toxic?", "error_type": "System is under-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Are there certain ways that your community tends to be targeted by outsiders?", "error_type": "", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Are there other communities whose content should be very similar to your community's? Verify that this content is treated similarly by the system.", "error_type": "", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Are there ways that you've seen individuals in your community actively try to thwart the rules of automated content moderation systems? Check whether these strategies work here.", "error_type": "", "evidence": [], "text_entry": "", "complete_status": False, }, ] # Filter to eligible reports: those that have been marked complete and include at least one piece of evidence. def get_eligible_reports(reports): eligible_reports = [] for r in reports: if (r["complete_status"] == True) and (len(r["evidence"]) > 0): eligible_reports.append(r) return eligible_reports # Submit all reports to AVID # Logs the responses def submit_reports_to_AVID(reports, cur_user, email, sep_selection, debug=DEBUG): # Set up the connection to AVID root = os.environ.get('AVID_API_URL') api_key = os.environ.get('AVID_API_KEY') key = {"Authorization": api_key} reports = get_eligible_reports(reports) if debug: print("Num eligible reports:", len(reports)) for r in reports: new_report = utils.convert_indie_label_json_to_avid_json(r, cur_user, email, sep_selection) url = root + "submit" response = requests.post(url, json=json.loads(new_report), headers=key) # The loads ensures type compliance uuid = response.json() if debug: print("Report", new_report) print("AVID API response:", response, uuid) ######################################## # ROUTE: /SAVE_REPORTS @app.route("/save_reports") def save_reports(debug=DEBUG): cur_user = request.args.get("cur_user") reports_json = request.args.get("reports") reports = json.loads(reports_json) model = request.args.get("model") # Save reports for current user to file reports_file = utils.get_reports_file(cur_user, model) with open(reports_file, "w", encoding ='utf8') as f: json.dump(reports, f) results = { "status": "success", } if debug: print(results) return json.dumps(results) ######################################## # ROUTE: /SUBMIT_AVID_REPORT @app.route("/submit_avid_report") def submit_avid_report(): cur_user = request.args.get("cur_user") email = request.args.get("email") sep_selection = request.args.get("sep_selection") reports_json = request.args.get("reports") reports = json.loads(reports_json) # Submit reports to AVID submit_reports_to_AVID(reports, cur_user, email, sep_selection) results = { "status": "success", } return json.dumps(results) ######################################## # ROUTE: /GET_EXPLORE_EXAMPLES @app.route("/get_explore_examples") def get_explore_examples(): threshold = utils.get_toxic_threshold() n_examples = int(request.args.get("n_examples")) # Get sample of examples df = utils.get_explore_df(n_examples, threshold) ex_json = df.to_json(orient="records") results = { "examples": ex_json, } return json.dumps(results) if __name__ == "__main__": app.run(debug=True, port=5001)