Spaces:
Sleeping
Sleeping
feat:add logs
Browse files- tasks/audio.py +7 -0
tasks/audio.py
CHANGED
@@ -42,10 +42,12 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
42 |
# Load and prepare the dataset
|
43 |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
44 |
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
|
|
|
45 |
|
46 |
# Split dataset
|
47 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
48 |
test_dataset = train_test["test"]
|
|
|
49 |
|
50 |
# Start tracking emissions
|
51 |
tracker.start()
|
@@ -63,6 +65,7 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
63 |
|
64 |
def predict_new_audio(model, dataset, sr):
|
65 |
list_mfcc = [compute_mfcc(row, sr) for row in dataset]
|
|
|
66 |
array_mfcc = np.vstack(list_mfcc)
|
67 |
predictions = model.predict(array_mfcc)
|
68 |
return predictions
|
@@ -70,7 +73,11 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
70 |
model_filename = "lightgbm_baseline_87_acc.pkl"
|
71 |
clf = joblib.load(model_filename)
|
72 |
|
|
|
|
|
73 |
predictions = predict_new_audio(clf, test_dataset, 12000)
|
|
|
|
|
74 |
|
75 |
#--------------------------------------------------------------------------------------------
|
76 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
42 |
# Load and prepare the dataset
|
43 |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
44 |
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
|
45 |
+
print('dataset loaded')
|
46 |
|
47 |
# Split dataset
|
48 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
49 |
test_dataset = train_test["test"]
|
50 |
+
print('train/test splitted')
|
51 |
|
52 |
# Start tracking emissions
|
53 |
tracker.start()
|
|
|
65 |
|
66 |
def predict_new_audio(model, dataset, sr):
|
67 |
list_mfcc = [compute_mfcc(row, sr) for row in dataset]
|
68 |
+
print('mfcc computed')
|
69 |
array_mfcc = np.vstack(list_mfcc)
|
70 |
predictions = model.predict(array_mfcc)
|
71 |
return predictions
|
|
|
73 |
model_filename = "lightgbm_baseline_87_acc.pkl"
|
74 |
clf = joblib.load(model_filename)
|
75 |
|
76 |
+
print('model loaded')
|
77 |
+
|
78 |
predictions = predict_new_audio(clf, test_dataset, 12000)
|
79 |
+
|
80 |
+
print('predictions done')
|
81 |
|
82 |
#--------------------------------------------------------------------------------------------
|
83 |
# YOUR MODEL INFERENCE STOPS HERE
|