vdwow commited on
Commit
6cdb2cf
·
1 Parent(s): abfb090

feat:add logs

Browse files
Files changed (1) hide show
  1. tasks/audio.py +7 -0
tasks/audio.py CHANGED
@@ -42,10 +42,12 @@ async def evaluate_audio(request: AudioEvaluationRequest):
42
  # Load and prepare the dataset
43
  # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
44
  dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
 
45
 
46
  # Split dataset
47
  train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
48
  test_dataset = train_test["test"]
 
49
 
50
  # Start tracking emissions
51
  tracker.start()
@@ -63,6 +65,7 @@ async def evaluate_audio(request: AudioEvaluationRequest):
63
 
64
  def predict_new_audio(model, dataset, sr):
65
  list_mfcc = [compute_mfcc(row, sr) for row in dataset]
 
66
  array_mfcc = np.vstack(list_mfcc)
67
  predictions = model.predict(array_mfcc)
68
  return predictions
@@ -70,7 +73,11 @@ async def evaluate_audio(request: AudioEvaluationRequest):
70
  model_filename = "lightgbm_baseline_87_acc.pkl"
71
  clf = joblib.load(model_filename)
72
 
 
 
73
  predictions = predict_new_audio(clf, test_dataset, 12000)
 
 
74
 
75
  #--------------------------------------------------------------------------------------------
76
  # YOUR MODEL INFERENCE STOPS HERE
 
42
  # Load and prepare the dataset
43
  # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
44
  dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
45
+ print('dataset loaded')
46
 
47
  # Split dataset
48
  train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
49
  test_dataset = train_test["test"]
50
+ print('train/test splitted')
51
 
52
  # Start tracking emissions
53
  tracker.start()
 
65
 
66
  def predict_new_audio(model, dataset, sr):
67
  list_mfcc = [compute_mfcc(row, sr) for row in dataset]
68
+ print('mfcc computed')
69
  array_mfcc = np.vstack(list_mfcc)
70
  predictions = model.predict(array_mfcc)
71
  return predictions
 
73
  model_filename = "lightgbm_baseline_87_acc.pkl"
74
  clf = joblib.load(model_filename)
75
 
76
+ print('model loaded')
77
+
78
  predictions = predict_new_audio(clf, test_dataset, 12000)
79
+
80
+ print('predictions done')
81
 
82
  #--------------------------------------------------------------------------------------------
83
  # YOUR MODEL INFERENCE STOPS HERE