Spaces:
Sleeping
Sleeping
init
Browse files- tasks/audio.py +20 -3
- tasks/models/lightgbm_baseline_87_acc.pkl +3 -0
tasks/audio.py
CHANGED
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
@@ -53,9 +57,21 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
53 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
54 |
#--------------------------------------------------------------------------------------------
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
#--------------------------------------------------------------------------------------------
|
61 |
# YOUR MODEL INFERENCE STOPS HERE
|
@@ -65,6 +81,7 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
65 |
emissions_data = tracker.stop_task()
|
66 |
|
67 |
# Calculate accuracy
|
|
|
68 |
accuracy = accuracy_score(true_labels, predictions)
|
69 |
|
70 |
# Prepare results dictionary
|
|
|
1 |
+
import librosa
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
from fastapi import APIRouter
|
6 |
from datetime import datetime
|
7 |
from datasets import load_dataset
|
|
|
57 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
58 |
#--------------------------------------------------------------------------------------------
|
59 |
|
60 |
+
def extract_features(example, sampling_rate):
|
61 |
+
audio_array = example['audio']['array']
|
62 |
+
mfcc = librosa.feature.mfcc(y=audio_array, sr=sampling_rate, n_mfcc=5)
|
63 |
+
return np.mean(mfcc, axis=1)
|
64 |
+
|
65 |
+
def predict_new_audio(model, dataset, sampling_rate):
|
66 |
+
features_list = [extract_features(example, sampling_rate) for example in dataset]
|
67 |
+
features_array = np.vstack(features_list)
|
68 |
+
predictions = model.predict(features_array)
|
69 |
+
return predictions
|
70 |
+
|
71 |
+
model_filename = "models/lightgbm_baseline_87_acc.pkl"
|
72 |
+
clf = joblib.load(model_filename)
|
73 |
+
|
74 |
+
predictions = predict_new_audio(clf, test_dataset, 12000)
|
75 |
|
76 |
#--------------------------------------------------------------------------------------------
|
77 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
81 |
emissions_data = tracker.stop_task()
|
82 |
|
83 |
# Calculate accuracy
|
84 |
+
true_labels = test_dataset["label"]
|
85 |
accuracy = accuracy_score(true_labels, predictions)
|
86 |
|
87 |
# Prepare results dictionary
|
tasks/models/lightgbm_baseline_87_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f6ffd6404837979e258257c20667274785d1803ee107dc82967ce9d41cd4ced
|
3 |
+
size 3388964
|