from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import random import os import librosa import joblib import numpy as np from .utils.evaluation import AudioEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info from dotenv import load_dotenv load_dotenv() router = APIRouter() DESCRIPTION = "LGBM Classifier Baseline on Mel-frequency cepstral coefficients" ROUTE = "/audio" @router.post(ROUTE, tags=["Audio Task"], description=DESCRIPTION) async def evaluate_audio(request: AudioEvaluationRequest): """ Evaluate audio classification for rainforest sound detection. Current Model: LGBM - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "chainsaw": 0, "environment": 1 } # Load and prepare the dataset # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) # Split dataset train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) test_dataset = train_test["test"] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- def compute_mfcc(row, sr): audio_array = row['audio']['array'] mfcc = librosa.feature.mfcc(y=audio_array, sr=sr, n_mfcc=5) return np.mean(mfcc, axis=1) def predict_new_audio(model, dataset, sr): list_mfcc = [extract_features(row, sr) for row in dataset] array_mfcc = np.vstack(list_mfcc) predictions = model.predict(array_mfcc) return predictions model_filename = "models/lightgbm_baseline_87_acc.pkl" clf = joblib.load(model_filename) predictions = predict_new_audio(clf, test_dataset, 12000) #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy true_labels = test_dataset["label"] accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results