avngrstark commited on
Commit
1feb390
·
verified ·
1 Parent(s): acffe6a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -52
app.py CHANGED
@@ -1,52 +1,54 @@
1
- import streamlit as st
2
- from langchain_huggingface import HuggingFaceEndpoint
3
- from langchain.prompts import PromptTemplate
4
- from langchain.chains import LLMChain
5
- from langchain.memory import ConversationBufferMemory
6
- import os
7
-
8
- # Set up your Hugging Face API token
9
- sec_key = os.getenv('HUGGINGFACE_API_TOKEN')
10
- os.environ['HUGGINGFACE_API_TOKEN'] = sec_key
11
-
12
- # Define your Hugging Face model
13
- repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
14
- llm = HuggingFaceEndpoint(repo_id=repo_id, temperature=0.7)
15
-
16
- # Define the prompt template
17
- template = """The following is a conversation between a user and an AI assistant.
18
- history:{history}
19
- Final Message by Human: {user_input}
20
- Final Message by AI: """
21
-
22
- prompt = PromptTemplate(
23
- template=template,
24
- input_variables=["history", "user_input"],
25
- )
26
-
27
- # Initialize memory
28
- memory = ConversationBufferMemory()
29
-
30
- # Create the LLM chain
31
- llm_chain = LLMChain(
32
- prompt=prompt,
33
- llm=llm,
34
- memory=memory
35
- )
36
-
37
- # Streamlit app
38
- st.title("AI Chatbot")
39
- st.write("Welcome to the AI Chatbot! Ask anything you like.")
40
-
41
- # User input
42
- user_input = st.text_input("You:", key="input")
43
-
44
- if st.button("Send"):
45
- if user_input:
46
- # Generate response
47
- response = llm_chain.invoke({"history": memory.chat_memory.messages, 'user_input': user_input})
48
- response_text = response['text']
49
- # Display the response
50
- st.text_area("ChatBot:", response_text, height=100)
51
- # Save the interaction in memory
52
- memory.save_context({"input": user_input}, {"output": response_text})
 
 
 
1
+ import streamlit as st
2
+ from langchain_huggingface import HuggingFaceEndpoint
3
+ from langchain.prompts import PromptTemplate
4
+ from langchain.chains import LLMChain
5
+ from langchain.memory import ConversationBufferMemory
6
+ import os
7
+
8
+ # Set up your Hugging Face API token
9
+ sec_key = os.getenv('HUGGINGFACE_API_TOKEN')
10
+ os.environ['HUGGINGFACE_API_TOKEN'] = sec_key
11
+
12
+ # Define your Hugging Face model
13
+ repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
14
+ llm = HuggingFaceEndpoint(repo_id=repo_id, temperature=0.7)
15
+
16
+ # Define the prompt template
17
+ template = """The following is a conversation between a user and an AI assistant.
18
+ history:{history}
19
+ Final Message by Human: {user_input}
20
+ Final Message by AI: """
21
+
22
+ prompt = PromptTemplate(
23
+ template=template,
24
+ input_variables=["history", "user_input"],
25
+ )
26
+
27
+ # Initialize memory
28
+ memory = ConversationBufferMemory()
29
+
30
+ # Create the LLM chain
31
+ llm_chain = LLMChain(
32
+ prompt=prompt,
33
+ llm=llm,
34
+ memory=memory
35
+ )
36
+
37
+ # Streamlit app
38
+ st.title("AI Chatbot")
39
+ st.write("Welcome to the AI Chatbot! Ask anything you like.")
40
+
41
+ # User input
42
+ user_input = st.text_input("You:", key="input")
43
+
44
+ if st.button("Send"):
45
+ if user_input:
46
+ # Generate response
47
+ response = llm_chain.invoke({"history": memory.chat_memory.messages, 'user_input': user_input})
48
+ response_text = response['text']
49
+ # Display the response
50
+ st.text_area("ChatBot:", response_text, height=100)
51
+
52
+ st.write('----------------------------------------------------------------------------------------------')
53
+ st.write('History:')
54
+ st.write(response['history'])