iurf7irfuyytruyyugb / optimizedSD /optimized_txt2img.py
johnslegers's picture
test
121f6d3
import argparse, os, re
import torch
import numpy as np
from random import randint
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import contextmanager, nullcontext
from ldmlib.util import instantiate_from_config
from optimUtils import split_weighted_subprompts, logger
from transformers import logging
# from samplers import CompVisDenoiser
logging.set_verbosity_error()
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
config = "optimizedSD/v1-inference.yaml"
DEFAULT_CKPT = "models/ldm/stable-diffusion-v1/model.ckpt"
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt", type=str, nargs="?", default="a painting of a virus monster playing guitar", help="the prompt to render"
)
parser.add_argument("--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/txt2img-samples")
parser.add_argument(
"--skip_grid",
action="store_true",
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
parser.add_argument(
"--skip_save",
action="store_true",
help="do not save individual samples. For speed measurements.",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--fixed_code",
action="store_true",
help="if enabled, uses the same starting code across samples ",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor",
)
parser.add_argument(
"--n_samples",
type=int,
default=5,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--device",
type=str,
default="cuda",
help="specify GPU (cuda/cuda:0/cuda:1/...)",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--unet_bs",
type=int,
default=1,
help="Slightly reduces inference time at the expense of high VRAM (value > 1 not recommended )",
)
parser.add_argument(
"--turbo",
action="store_true",
help="Reduces inference time on the expense of 1GB VRAM",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
parser.add_argument(
"--format",
type=str,
help="output image format",
choices=["jpg", "png"],
default="png",
)
parser.add_argument(
"--sampler",
type=str,
help="sampler",
choices=["ddim", "plms","heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"],
default="plms",
)
parser.add_argument(
"--ckpt",
type=str,
help="path to checkpoint of model",
default=DEFAULT_CKPT,
)
opt = parser.parse_args()
tic = time.time()
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
grid_count = len(os.listdir(outpath)) - 1
if opt.seed == None:
opt.seed = randint(0, 1000000)
seed_everything(opt.seed)
# Logging
logger(vars(opt), log_csv = "logs/txt2img_logs.csv")
sd = load_model_from_config(f"{opt.ckpt}")
li, lo = [], []
for key, value in sd.items():
sp = key.split(".")
if (sp[0]) == "model":
if "input_blocks" in sp:
li.append(key)
elif "middle_block" in sp:
li.append(key)
elif "time_embed" in sp:
li.append(key)
else:
lo.append(key)
for key in li:
sd["model1." + key[6:]] = sd.pop(key)
for key in lo:
sd["model2." + key[6:]] = sd.pop(key)
config = OmegaConf.load(f"{config}")
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()
model.unet_bs = opt.unet_bs
model.cdevice = opt.device
model.turbo = opt.turbo
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()
modelCS.cond_stage_model.device = opt.device
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
del sd
if opt.device != "cpu" and opt.precision == "autocast":
model.half()
modelCS.half()
start_code = None
if opt.fixed_code:
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=opt.device)
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if not opt.from_file:
assert opt.prompt is not None
prompt = opt.prompt
print(f"Using prompt: {prompt}")
data = [batch_size * [prompt]]
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
text = f.read()
print(f"Using prompt: {text.strip()}")
data = text.splitlines()
data = batch_size * list(data)
data = list(chunk(sorted(data), batch_size))
if opt.precision == "autocast" and opt.device != "cpu":
precision_scope = autocast
else:
precision_scope = nullcontext
seeds = ""
with torch.no_grad():
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
sample_path = os.path.join(outpath, "_".join(re.split(":| ", prompts[0])))[:150]
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
with precision_scope("cuda"):
modelCS.to(opt.device)
uc = None
if opt.scale != 1.0:
uc = modelCS.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
subprompts, weights = split_weighted_subprompts(prompts[0])
if len(subprompts) > 1:
c = torch.zeros_like(uc)
totalWeight = sum(weights)
# normalize each "sub prompt" and add it
for i in range(len(subprompts)):
weight = weights[i]
# if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
else:
c = modelCS.get_learned_conditioning(prompts)
shape = [opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f]
if opt.device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelCS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
samples_ddim = model.sample(
S=opt.ddim_steps,
conditioning=c,
seed=opt.seed,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code,
sampler = opt.sampler,
)
modelFS.to(opt.device)
print(samples_ddim.shape)
print("saving images")
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(samples_ddim[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, "seed_" + str(opt.seed) + "_" + f"{base_count:05}.{opt.format}")
)
seeds += str(opt.seed) + ","
opt.seed += 1
base_count += 1
if opt.device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
del samples_ddim
print("memory_final = ", torch.cuda.memory_allocated() / 1e6)
toc = time.time()
time_taken = (toc - tic) / 60.0
print(
(
"Samples finished in {0:.2f} minutes and exported to "
+ sample_path
+ "\n Seeds used = "
+ seeds[:-1]
).format(time_taken)
)