import streamlit as st st.set_page_config(layout="wide") st.markdown(""" ## Anatomy Head to Toe Table with Body Organs Costly Conditions, Spending, CPT Codes and Frequency | Table Num | Body Part | Organ/Part | Description | ๐Ÿ“ˆ Costly Condition | ๐Ÿ’ฐ Spending (billions) | CPT Range Start | CPT Range Finish | Frequency | |-----------|------------------|----------------------|-------------------------------|------------------------------|------------------------|-----------------|------------------|----------------| | 1 | ๐Ÿง  Head | ๐Ÿง  Brain | Controls mental processes | ๐Ÿ˜จ Anxiety & Depression | 210 | 90791 | 90899 | 1 in 5 | | 2 | ๐Ÿ‘€ Eyes | ๐Ÿ‘๏ธ Optic Nerve | Vision | ๐Ÿ‘“ Cataracts | 10.7 | 92002 | 92499 | 1 in 6 (over 40 years) | | 3 | ๐Ÿ‘‚ Ears | ๐Ÿš Cochlea | Hearing | ๐Ÿ“ข Hearing Loss | 7.1 | 92502 | 92700 | 1 in 8 (over 12 years) | | 4 | ๐Ÿ‘ƒ Nose | ๐Ÿ‘ƒ Olfactory Bulb | Smell | ๐Ÿคง Allergies | 25 | 31231 | 31294 | 1 in 3 | | 5 | ๐Ÿ‘„ Mouth | ๐Ÿ‘… Tongue | Taste | ๐Ÿฆท Dental Issues | 130 | 00100 | 00192 | 1 in 2 | | 6 | ๐Ÿซ Neck | ๐Ÿฆ‹ Thyroid | Metabolism | ๐Ÿฆ  Hypothyroidism | 3.1 | 60210 | 60271 | 1 in 20 | | 7 | ๐Ÿ’ช Upper Body | โค๏ธ Heart | Circulation | ๐Ÿ’” Heart Disease | 230 | 92920 | 93799 | 1 in 4 (over 65 years) | | 8 | ๐Ÿ’ช Upper Body | ๐Ÿซ Lungs | Respiration | ๐Ÿ˜ท Chronic Obstructive Pulmonary Disease | 70 | 94002 | 94799 | 1 in 20 (over 45 years) | | 9 | ๐Ÿ’ช Upper Body | ๐Ÿท Liver | Detoxification | ๐Ÿบ Liver Disease | 40 | 47000 | 47999 | 1 in 10 | | 10 | ๐Ÿ’ช Upper Body | ๐Ÿน Kidneys | Filtration | ๐ŸŒŠ Chronic Kidney Disease | 110 | 50010 | 50999 | 1 in 7 | | 11 | ๐Ÿ’ช Upper Body | ๐Ÿ’‰ Pancreas | Insulin secretion | ๐Ÿฌ Diabetes | 327 | 48100 | 48999 | 1 in 10 | | 12 | ๐Ÿ’ช Upper Body | ๐Ÿฝ๏ธ Stomach | Digestion | ๐Ÿ”ฅ Gastroesophageal Reflux Disease | 17 | 43200 | 43289 | 1 in 5 | | 13 | ๐Ÿ’ช Upper Body | ๐Ÿ›ก๏ธ Spleen | Immune functions | ๐Ÿฉธ Anemia | 5.6 | 38100 | 38199 | 1 in 6 | | 14 | ๐Ÿ’ช Upper Body | ๐Ÿซ€ Blood Vessels | Circulation of blood | ๐Ÿš‘ Hypertension | 55 | 40110 | 40599 | 1 in 3 | | 15 | ๐Ÿฆต Lower Body | ๐Ÿ Colon | Absorption of water, minerals | ๐ŸŒŸ Colorectal Cancer | 14 | 45378 | 45378 | 1 in 23 | | 16 | ๐Ÿฆต Lower Body | ๐Ÿšฝ Bladder | Urine excretion | ๐Ÿ’ง Urinary Incontinence | 8 | 51700 | 51798 | 1 in 4 (over 65 years) | | 17 | ๐Ÿฆต Lower Body | ๐Ÿ’ž Reproductive Organs | Sex hormone secretion | ๐ŸŽ—๏ธ Endometriosis | 22 | 56405 | 58999 | 1 in 10 (women) | | 18 | ๐Ÿฆถ Feet | ๐ŸŽฏ Nerve endings | Balance and movement | ๐Ÿค• Peripheral Neuropathy | 19 | 95900 | 96004 | 1 in 30 | | 19 | ๐Ÿฆถ Feet | ๐ŸŒก๏ธ Skin | Temperature regulation | ๐ŸŒž Skin Cancer | 8.1 | 96910 | 96999 | 1 in 5 | | 20 | ๐Ÿฆถ Feet | ๐Ÿ’ช Muscles | Movement and strength | ๐Ÿ‹๏ธโ€โ™‚๏ธ Musculoskeletal Disorders | 176 | 97110 | 97799 | 1 in 2 | """) import os import json from PIL import Image from urllib.parse import quote # Ensure this import is included # Set page configuration with a title and favicon st.set_page_config( page_title="๐ŸŒŒ๐Ÿš€ Mixable AI - Voice Search", page_icon="๐ŸŒ ", layout="wide", initial_sidebar_state="expanded", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': "https://huggingface.co/spaces/awacke1/WebDataDownload", 'About': "# Midjourney: https://discord.com/channels/@me/997514686608191558" } ) # Ensure the directory for storing scores exists score_dir = "scores" os.makedirs(score_dir, exist_ok=True) # Function to generate a unique key for each button, including an emoji def generate_key(label, header, idx): return f"{header}_{label}_{idx}_key" # Function to increment and save score def update_score(key, increment=1): score_file = os.path.join(score_dir, f"{key}.json") if os.path.exists(score_file): with open(score_file, "r") as file: score_data = json.load(file) else: score_data = {"clicks": 0, "score": 0} score_data["clicks"] += 1 score_data["score"] += increment with open(score_file, "w") as file: json.dump(score_data, file) return score_data["score"] # Function to load score def load_score(key): score_file = os.path.join(score_dir, f"{key}.json") if os.path.exists(score_file): with open(score_file, "r") as file: score_data = json.load(file) return score_data["score"] return 0 roleplaying_glossary = { "๐ŸŽด Traditional Card Games": { "Bridge": ["Trick-taking", "Bidding and partnership", "Complex scoring"], "Poker": ["Betting/Card ranking", "Bluffing and hand management", "Various play styles"], "Hearts": ["Trick-avoidance", "Passing cards strategy", "Shooting the moon"], "Spades": ["Trick-taking", "Partnership and bidding", "Blind bidding"], "Rummy": ["Matching", "Set and run formation", "Point scoring"], }, "๐Ÿ”ฎ Collectible Card Games (CCGs)": { "Magic: The Gathering": ["Deck building", "Resource management", "Strategic play"], "Yu-Gi-Oh!": ["Dueling", "Summoning strategies", "Trap and spell cards"], "Pokรฉmon TCG": ["Collectible", "Type advantages", "Energy management"], "KeyForge": ["Unique deck", "No deck building", "Chain system"], "Legend of the Five Rings": ["Living Card Game", "Honor and conflict", "Clan loyalty"], }, "๐Ÿ•น๏ธ Digital Card Games": { "Hearthstone": ["Digital CCG", "Hero powers", "Expansive card sets"], "Gwent": ["Strategic depth", "Row-based play", "Witcher universe"], "Slay the Spire": ["Roguelike deck-builder", "Card drafting", "Relic synergies"], "Eternal Card Game": ["Digital CCG", "Cross-platform", "Drafting and events"], }, "๐Ÿ’ป Card Battler Video Games": { "Yu-Gi-Oh! Duel Links": ["Speed Duel format", "Mobile and PC", "Competitive ladder"], "Magic: The Gathering Arena": ["Digital adaptation", "Regular updates", "Esports"], "Monster Train": ["Roguelike", "Multi-tiered defense", "Clan synergies"], "Legends of Runeterra": ["League of Legends universe", "Dynamic combat", "Champion leveling"], }, "๐Ÿง  Game Design and Dynamics": { "Deck Building Strategies": ["Card synergy", "Mana curve", "Meta considerations"], "Gameplay Mechanics": ["Turn-based", "Resource management", "Combat dynamics"], "Player Engagement": ["Replayability", "Strategic depth", "Social play"], }, "๐Ÿ“š Lore & Background": { "Magic: The Gathering": ["Rich lore", "Multiverse settings", "Planeswalker stories"], "Yu-Gi-Oh!": ["Anime-based", "Duel Monsters", "Egyptian mythology"], "Legends of Runeterra": ["Expansive lore", "Champion backstories", "Faction conflicts"], }, "๐Ÿ› ๏ธ Digital Tools & Platforms": { "Online Play": ["Remote gameplay", "Digital tournaments", "Community events"], "Deck Building Tools": ["Card database access", "Deck testing", "Community sharing"], "Strategy Guides": ["Meta analysis", "Deck guides", "Tournament reports"], }, "๐ŸŽ–๏ธ Competitive Scene": { "Tournaments": ["Local game stores", "Regional competitions", "World championships"], "Ranking Systems": ["Elo ratings", "Ladder rankings", "Seasonal rewards"], "Esports": ["Live-streamed events", "Professional teams", "Sponsorships"], }, } def search_glossary(query): for category, terms in roleplaying_glossary.items(): if query.lower() in (term.lower() for term in terms): st.markdown(f"#### {category}") st.write(f"- {query}") st.write('## ' + query) all="" st.write('## ๐Ÿ” Running with GPT.') # ------------------------------------------------------------------------------------------------- response = chat_with_model(query) #st.write(response) filename = generate_filename(query + ' --- ' + response, "md") create_file(filename, query, response, should_save) st.write('## ๐Ÿ” Running with Llama.') # ------------------------------------------------------------------------------------------------- response2 = StreamLLMChatResponse(query) #st.write(response2) filename_txt = generate_filename(query + ' --- ' + response2, "md") create_file(filename_txt, query, response2, should_save) all = '# Query: ' + query + '# Response: ' + response + '# Response2: ' + response2 filename_txt2 = generate_filename(query + ' --- ' + all, "md") create_file(filename_txt2, query, all, should_save) SpeechSynthesis(all) return all # Function to display the glossary in a structured format def display_glossary(glossary, area): if area in glossary: st.subheader(f"๐Ÿ“˜ Glossary for {area}") for game, terms in glossary[area].items(): st.markdown(f"### {game}") for idx, term in enumerate(terms, start=1): st.write(f"{idx}. {term}") # Function to display the entire glossary in a grid format with links def display_glossary_grid(roleplaying_glossary): search_urls = { "๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", "๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}", "โ–ถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", "๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}", "๐ŸŽฒ": lambda k: f"https://huggingface.co/spaces/awacke1/MixableCardGameAI?q={quote(k)}", # this url plus query! } for category, details in roleplaying_glossary.items(): st.write(f"### {category}") cols = st.columns(len(details)) # Create dynamic columns based on the number of games for idx, (game, terms) in enumerate(details.items()): with cols[idx]: st.markdown(f"#### {game}") for term in terms: links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) st.markdown(f"{term} {links_md}", unsafe_allow_html=True) game_emojis = { "Dungeons and Dragons": "๐Ÿ‰", "Call of Cthulhu": "๐Ÿ™", "GURPS": "๐ŸŽฒ", "Pathfinder": "๐Ÿ—บ๏ธ", "Kindred of the East": "๐ŸŒ…", "Changeling": "๐Ÿƒ", } topic_emojis = { "Core Rulebooks": "๐Ÿ“š", "Maps & Settings": "๐Ÿ—บ๏ธ", "Game Mechanics & Tools": "โš™๏ธ", "Monsters & Adversaries": "๐Ÿ‘น", "Campaigns & Adventures": "๐Ÿ“œ", "Creatives & Assets": "๐ŸŽจ", "Game Master Resources": "๐Ÿ› ๏ธ", "Lore & Background": "๐Ÿ“–", "Character Development": "๐Ÿง", "Homebrew Content": "๐Ÿ”ง", "General Topics": "๐ŸŒ", } # Adjusted display_buttons_with_scores function def display_buttons_with_scores(): for category, games in roleplaying_glossary.items(): category_emoji = topic_emojis.get(category, "๐Ÿ”") # Default to search icon if no match st.markdown(f"## {category_emoji} {category}") for game, terms in games.items(): game_emoji = game_emojis.get(game, "๐ŸŽฎ") # Default to generic game controller if no match for term in terms: key = f"{category}_{game}_{term}".replace(' ', '_').lower() score = load_score(key) if st.button(f"{game_emoji} {term} {score}", key=key): update_score(key) # Create a dynamic query incorporating emojis and formatting for clarity query_prefix = f"{category_emoji} {game_emoji} **{game} - {category}:**" # ----------------------------------------------------------------- # query_body = f"Create a detailed outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements." query_body = f"Create a streamlit python app.py that produces a detailed markdown outline and CSV dataset user interface with an outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements." response = search_glossary(query_prefix + query_body, roleplaying_glossary) def fetch_wikipedia_summary(keyword): # Placeholder function for fetching Wikipedia summaries # In a real app, you might use requests to fetch from the Wikipedia API return f"Summary for {keyword}. For more information, visit Wikipedia." def create_search_url_youtube(keyword): base_url = "https://www.youtube.com/results?search_query=" return base_url + keyword.replace(' ', '+') def create_search_url_bing(keyword): base_url = "https://www.bing.com/search?q=" return base_url + keyword.replace(' ', '+') def create_search_url_wikipedia(keyword): base_url = "https://www.wikipedia.org/search-redirect.php?family=wikipedia&language=en&search=" return base_url + keyword.replace(' ', '+') def create_search_url_google(keyword): base_url = "https://www.google.com/search?q=" return base_url + keyword.replace(' ', '+') def display_images_and_wikipedia_summaries(): st.title('Gallery with Related Stories') image_files = [f for f in os.listdir('.') if f.endswith('.png')] if not image_files: st.write("No PNG images found in the current directory.") return for image_file in image_files: image = Image.open(image_file) st.image(image, caption=image_file, use_column_width=True) keyword = image_file.split('.')[0] # Assumes keyword is the file name without extension # Display Wikipedia and Google search links wikipedia_url = create_search_url_wikipedia(keyword) google_url = create_search_url_google(keyword) youtube_url = create_search_url_youtube(keyword) bing_url = create_search_url_bing(keyword) links_md = f""" [Wikipedia]({wikipedia_url}) | [Google]({google_url}) | [YouTube]({youtube_url}) | [Bing]({bing_url}) """ st.markdown(links_md) def get_all_query_params(key): return st.query_params().get(key, []) def clear_query_params(): st.query_params() # Function to display content or image based on a query def display_content_or_image(query): # Check if the query matches any glossary term for category, terms in transhuman_glossary.items(): for term in terms: if query.lower() in term.lower(): st.subheader(f"Found in {category}:") st.write(term) return True # Return after finding and displaying the first match # Check for an image match in a predefined directory (adjust path as needed) image_dir = "images" # Example directory where images are stored image_path = f"{image_dir}/{query}.png" # Construct image path with query if os.path.exists(image_path): st.image(image_path, caption=f"Image for {query}") return True # If no content or image is found st.warning("No matching content or image found.") return False # Imports import base64 import glob import json import math import openai import os import pytz import re import requests import streamlit as st import textract import time import zipfile import huggingface_hub import dotenv from audio_recorder_streamlit import audio_recorder from bs4 import BeautifulSoup from collections import deque from datetime import datetime from dotenv import load_dotenv from huggingface_hub import InferenceClient from io import BytesIO from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationalRetrievalChain from langchain.embeddings import OpenAIEmbeddings from langchain.memory import ConversationBufferMemory from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from openai import ChatCompletion from PyPDF2 import PdfReader from templates import bot_template, css, user_template from xml.etree import ElementTree as ET import streamlit.components.v1 as components # Import Streamlit Components for HTML5 def add_Med_Licensing_Exam_Dataset(): import streamlit as st from datasets import load_dataset dataset = load_dataset("augtoma/usmle_step_1")['test'] # Using 'test' split st.title("USMLE Step 1 Dataset Viewer") if len(dataset) == 0: st.write("๐Ÿ˜ข The dataset is empty.") else: st.write(""" ๐Ÿ” Use the search box to filter questions or use the grid to scroll through the dataset. """) # ๐Ÿ‘ฉโ€๐Ÿ”ฌ Search Box search_term = st.text_input("Search for a specific question:", "") # ๐ŸŽ› Pagination records_per_page = 100 num_records = len(dataset) num_pages = max(int(num_records / records_per_page), 1) # Skip generating the slider if num_pages is 1 (i.e., all records fit in one page) if num_pages > 1: page_number = st.select_slider("Select page:", options=list(range(1, num_pages + 1))) else: page_number = 1 # Only one page # ๐Ÿ“Š Display Data start_idx = (page_number - 1) * records_per_page end_idx = start_idx + records_per_page # ๐Ÿงช Apply the Search Filter filtered_data = [] for record in dataset[start_idx:end_idx]: if isinstance(record, dict) and 'text' in record and 'id' in record: if search_term: if search_term.lower() in record['text'].lower(): st.markdown(record) filtered_data.append(record) else: filtered_data.append(record) # ๐ŸŒ Render the Grid for record in filtered_data: st.write(f"## Question ID: {record['id']}") st.write(f"### Question:") st.write(f"{record['text']}") st.write(f"### Answer:") st.write(f"{record['answer']}") st.write("---") st.write(f"๐Ÿ˜Š Total Records: {num_records} | ๐Ÿ“„ Displaying {start_idx+1} to {min(end_idx, num_records)}") # 1. Constants and Top Level UI Variables # My Inference API Copy API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama # Meta's Original - Chat HF Free Version: #API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf" API_KEY = os.getenv('API_KEY') MODEL1="meta-llama/Llama-2-7b-chat-hf" MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf" HF_KEY = os.getenv('HF_KEY') headers = { "Authorization": f"Bearer {HF_KEY}", "Content-Type": "application/json" } key = os.getenv('OPENAI_API_KEY') prompt = f"Write instructions to teach discharge planning along with guidelines and patient education. List entities, features and relationships to CCDA and FHIR objects in boldface." should_save = st.sidebar.checkbox("๐Ÿ’พ Save", value=True, help="Save your session data.") def SpeechSynthesis(result): documentHTML5=''' Read It Aloud

๐Ÿ”Š Read It Aloud


''' components.html(documentHTML5, width=1280, height=300) #return result # 3. Stream Llama Response # @st.cache_resource def StreamLLMChatResponse(prompt): try: endpoint_url = API_URL hf_token = API_KEY st.write('Running client ' + endpoint_url) client = InferenceClient(endpoint_url, token=hf_token) gen_kwargs = dict( max_new_tokens=512, top_k=30, top_p=0.9, temperature=0.2, repetition_penalty=1.02, stop_sequences=["\nUser:", "<|endoftext|>", ""], ) stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs) report=[] res_box = st.empty() collected_chunks=[] collected_messages=[] allresults='' for r in stream: if r.token.special: continue if r.token.text in gen_kwargs["stop_sequences"]: break collected_chunks.append(r.token.text) chunk_message = r.token.text collected_messages.append(chunk_message) try: report.append(r.token.text) if len(r.token.text) > 0: result="".join(report).strip() res_box.markdown(f'*{result}*') except: st.write('Stream llm issue') SpeechSynthesis(result) return result except: st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).') # 4. Run query with payload def query(payload): response = requests.post(API_URL, headers=headers, json=payload) st.markdown(response.json()) return response.json() def get_output(prompt): return query({"inputs": prompt}) # 5. Auto name generated output files from time and content def generate_filename(prompt, file_type): central = pytz.timezone('US/Central') safe_date_time = datetime.now(central).strftime("%m%d_%H%M") replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:255] # 255 is linux max, 260 is windows max #safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45] return f"{safe_date_time}_{safe_prompt}.{file_type}" # 6. Speech transcription via OpenAI service def transcribe_audio(openai_key, file_path, model): openai.api_key = openai_key OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" headers = { "Authorization": f"Bearer {openai_key}", } with open(file_path, 'rb') as f: data = {'file': f} st.write('STT transcript ' + OPENAI_API_URL) response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model}) if response.status_code == 200: st.write(response.json()) chatResponse = chat_with_model(response.json().get('text'), '') # ************************************* transcript = response.json().get('text') filename = generate_filename(transcript, 'txt') response = chatResponse user_prompt = transcript create_file(filename, user_prompt, response, should_save) return transcript else: st.write(response.json()) st.error("Error in API call.") return None # 7. Auto stop on silence audio control for recording WAV files def save_and_play_audio(audio_recorder): audio_bytes = audio_recorder(key='audio_recorder') if audio_bytes: filename = generate_filename("Recording", "wav") with open(filename, 'wb') as f: f.write(audio_bytes) st.audio(audio_bytes, format="audio/wav") return filename return None # 8. File creator that interprets type and creates output file for text, markdown and code def create_file(filename, prompt, response, should_save=True): if not should_save: return base_filename, ext = os.path.splitext(filename) if ext in ['.txt', '.htm', '.md']: with open(f"{base_filename}.md", 'w') as file: try: content = prompt.strip() + '\r\n' + response file.write(content) except: st.write('.') #has_python_code = re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response) #has_python_code = bool(re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response)) #if has_python_code: # python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip() # with open(f"{base_filename}-Code.py", 'w') as file: # file.write(python_code) # with open(f"{base_filename}.md", 'w') as file: # content = prompt.strip() + '\r\n' + response # file.write(content) def truncate_document(document, length): return document[:length] def divide_document(document, max_length): return [document[i:i+max_length] for i in range(0, len(document), max_length)] # 9. Sidebar with UI controls to review and re-run prompts and continue responses @st.cache_resource def get_table_download_link(file_path): with open(file_path, 'r') as file: data = file.read() b64 = base64.b64encode(data.encode()).decode() file_name = os.path.basename(file_path) ext = os.path.splitext(file_name)[1] # get the file extension if ext == '.txt': mime_type = 'text/plain' elif ext == '.py': mime_type = 'text/plain' elif ext == '.xlsx': mime_type = 'text/plain' elif ext == '.csv': mime_type = 'text/plain' elif ext == '.htm': mime_type = 'text/html' elif ext == '.md': mime_type = 'text/markdown' elif ext == '.wav': mime_type = 'audio/wav' else: mime_type = 'application/octet-stream' # general binary data type href = f'{file_name}' return href def CompressXML(xml_text): root = ET.fromstring(xml_text) for elem in list(root.iter()): if isinstance(elem.tag, str) and 'Comment' in elem.tag: elem.parent.remove(elem) return ET.tostring(root, encoding='unicode', method="xml") # 10. Read in and provide UI for past files @st.cache_resource def read_file_content(file,max_length): if file.type == "application/json": content = json.load(file) return str(content) elif file.type == "text/html" or file.type == "text/htm": content = BeautifulSoup(file, "html.parser") return content.text elif file.type == "application/xml" or file.type == "text/xml": tree = ET.parse(file) root = tree.getroot() xml = CompressXML(ET.tostring(root, encoding='unicode')) return xml elif file.type == "text/markdown" or file.type == "text/md": md = mistune.create_markdown() content = md(file.read().decode()) return content elif file.type == "text/plain": return file.getvalue().decode() else: return "" # 11. Chat with GPT - Caution on quota - now favoring fastest AI pipeline STT Whisper->LLM Llama->TTS @st.cache_resource def chat_with_model(prompt, document_section='', model_choice='gpt-3.5-turbo'): model = model_choice conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] conversation.append({'role': 'user', 'content': prompt}) if len(document_section)>0: conversation.append({'role': 'assistant', 'content': document_section}) start_time = time.time() report = [] res_box = st.empty() collected_chunks = [] collected_messages = [] st.write('LLM stream ' + 'gpt-3.5-turbo') for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True): collected_chunks.append(chunk) chunk_message = chunk['choices'][0]['delta'] collected_messages.append(chunk_message) content=chunk["choices"][0].get("delta",{}).get("content") try: report.append(content) if len(content) > 0: result = "".join(report).strip() res_box.markdown(f'*{result}*') except: st.write(' ') full_reply_content = ''.join([m.get('content', '') for m in collected_messages]) st.write("Elapsed time:") st.write(time.time() - start_time) return full_reply_content # 12. Embedding VectorDB for LLM query of documents to text to compress inputs and prompt together as Chat memory using Langchain @st.cache_resource def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'): conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] conversation.append({'role': 'user', 'content': prompt}) if len(file_content)>0: conversation.append({'role': 'assistant', 'content': file_content}) response = openai.ChatCompletion.create(model=model_choice, messages=conversation) return response['choices'][0]['message']['content'] def extract_mime_type(file): if isinstance(file, str): pattern = r"type='(.*?)'" match = re.search(pattern, file) if match: return match.group(1) else: raise ValueError(f"Unable to extract MIME type from {file}") elif isinstance(file, streamlit.UploadedFile): return file.type else: raise TypeError("Input should be a string or a streamlit.UploadedFile object") def extract_file_extension(file): # get the file name directly from the UploadedFile object file_name = file.name pattern = r".*?\.(.*?)$" match = re.search(pattern, file_name) if match: return match.group(1) else: raise ValueError(f"Unable to extract file extension from {file_name}") # Normalize input as text from PDF and other formats @st.cache_resource def pdf2txt(docs): text = "" for file in docs: file_extension = extract_file_extension(file) st.write(f"File type extension: {file_extension}") if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']: text += file.getvalue().decode('utf-8') elif file_extension.lower() == 'pdf': from PyPDF2 import PdfReader pdf = PdfReader(BytesIO(file.getvalue())) for page in range(len(pdf.pages)): text += pdf.pages[page].extract_text() # new PyPDF2 syntax return text def txt2chunks(text): text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) return text_splitter.split_text(text) # Vector Store using FAISS @st.cache_resource def vector_store(text_chunks): embeddings = OpenAIEmbeddings(openai_api_key=key) return FAISS.from_texts(texts=text_chunks, embedding=embeddings) # Memory and Retrieval chains @st.cache_resource def get_chain(vectorstore): llm = ChatOpenAI() memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory) def process_user_input(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): template = user_template if i % 2 == 0 else bot_template st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True) filename = generate_filename(user_question, 'txt') response = message.content user_prompt = user_question create_file(filename, user_prompt, response, should_save) def divide_prompt(prompt, max_length): words = prompt.split() chunks = [] current_chunk = [] current_length = 0 for word in words: if len(word) + current_length <= max_length: current_length += len(word) + 1 current_chunk.append(word) else: chunks.append(' '.join(current_chunk)) current_chunk = [word] current_length = len(word) chunks.append(' '.join(current_chunk)) return chunks # 13. Provide way of saving all and deleting all to give way of reviewing output and saving locally before clearing it @st.cache_resource def create_zip_of_files(files): zip_name = "all_files.zip" with zipfile.ZipFile(zip_name, 'w') as zipf: for file in files: zipf.write(file) return zip_name @st.cache_resource def get_zip_download_link(zip_file): with open(zip_file, 'rb') as f: data = f.read() b64 = base64.b64encode(data).decode() href = f'Download All' return href # 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10 # My Inference Endpoint API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud' # Original API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en" MODEL2 = "openai/whisper-small.en" MODEL2_URL = "https://huggingface.co/openai/whisper-small.en" #headers = { # "Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", # "Content-Type": "audio/wav" #} # HF_KEY = os.getenv('HF_KEY') HF_KEY = st.secrets['HF_KEY'] headers = { "Authorization": f"Bearer {HF_KEY}", "Content-Type": "audio/wav" } #@st.cache_resource def query(filename): with open(filename, "rb") as f: data = f.read() response = requests.post(API_URL_IE, headers=headers, data=data) return response.json() def generate_filename(prompt, file_type): central = pytz.timezone('US/Central') safe_date_time = datetime.now(central).strftime("%m%d_%H%M") replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] return f"{safe_date_time}_{safe_prompt}.{file_type}" # 15. Audio recorder to Wav file def save_and_play_audio(audio_recorder): audio_bytes = audio_recorder() if audio_bytes: filename = generate_filename("Recording", "wav") with open(filename, 'wb') as f: f.write(audio_bytes) st.audio(audio_bytes, format="audio/wav") return filename # 16. Speech transcription to file output def transcribe_audio(filename): output = query(filename) return output def whisper_main(): #st.title("Speech to Text") #st.write("Record your speech and get the text.") # Audio, transcribe, GPT: filename = save_and_play_audio(audio_recorder) if filename is not None: transcription = transcribe_audio(filename) try: transcript = transcription['text'] st.write(transcript) except: transcript='' st.write(transcript) # Whisper to GPT: New!! --------------------------------------------------------------------- st.write('Reasoning with your inputs with GPT..') response = chat_with_model(transcript) st.write('Response:') st.write(response) filename = generate_filename(response, "txt") create_file(filename, transcript, response, should_save) # Whisper to GPT: New!! --------------------------------------------------------------------- # Whisper to Llama: response = StreamLLMChatResponse(transcript) filename_txt = generate_filename(transcript, "md") create_file(filename_txt, transcript, response, should_save) filename_wav = filename_txt.replace('.txt', '.wav') import shutil try: if os.path.exists(filename): shutil.copyfile(filename, filename_wav) except: st.write('.') if os.path.exists(filename): os.remove(filename) #st.experimental_rerun() #except: # st.write('Starting Whisper Model on GPU. Please retry in 30 seconds.') # Sample function to demonstrate a response, replace with your own logic def StreamMedChatResponse(topic): st.write(f"Showing resources or questions related to: {topic}") # 17. Main def main(): prompt = f"Write ten funny jokes that are tweet length stories that make you laugh. Show as markdown outline with emojis for each." # Add Wit and Humor buttons # add_witty_humor_buttons() # add_medical_exam_buttons() with st.expander("Prompts ๐Ÿ“š", expanded=False): example_input = st.text_input("Enter your prompt text for Llama:", value=prompt, help="Enter text to get a response from DromeLlama.") if st.button("Run Prompt With Llama model", help="Click to run the prompt."): try: response=StreamLLMChatResponse(example_input) create_file(filename, example_input, response, should_save) except: st.write('Llama model is asleep. Starting now on A10 GPU. Please wait one minute then retry. KEDA triggered.') openai.api_key = os.getenv('OPENAI_API_KEY') if openai.api_key == None: openai.api_key = st.secrets['OPENAI_API_KEY'] menu = ["txt", "htm", "xlsx", "csv", "md", "py"] choice = st.sidebar.selectbox("Output File Type:", menu) model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100) collength, colupload = st.columns([2,3]) # adjust the ratio as needed with collength: max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) with colupload: uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"]) document_sections = deque() document_responses = {} if uploaded_file is not None: file_content = read_file_content(uploaded_file, max_length) document_sections.extend(divide_document(file_content, max_length)) if len(document_sections) > 0: if st.button("๐Ÿ‘๏ธ View Upload"): st.markdown("**Sections of the uploaded file:**") for i, section in enumerate(list(document_sections)): st.markdown(f"**Section {i+1}**\n{section}") st.markdown("**Chat with the model:**") for i, section in enumerate(list(document_sections)): if i in document_responses: st.markdown(f"**Section {i+1}**\n{document_responses[i]}") else: if st.button(f"Chat about Section {i+1}"): st.write('Reasoning with your inputs...') #response = chat_with_model(user_prompt, section, model_choice) st.write('Response:') st.write(response) document_responses[i] = response filename = generate_filename(f"{user_prompt}_section_{i+1}", choice) create_file(filename, user_prompt, response, should_save) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) if st.button('๐Ÿ’ฌ Chat'): st.write('Reasoning with your inputs...') user_prompt_sections = divide_prompt(user_prompt, max_length) full_response = '' for prompt_section in user_prompt_sections: response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice) full_response += response + '\n' # Combine the responses response = full_response st.write('Response:') st.write(response) filename = generate_filename(user_prompt, choice) create_file(filename, user_prompt, response, should_save) # Compose a file sidebar of markdown md files: all_files = glob.glob("*.md") all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order if st.sidebar.button("๐Ÿ—‘ Delete All Text"): for file in all_files: os.remove(file) st.experimental_rerun() if st.sidebar.button("โฌ‡๏ธ Download All"): zip_file = create_zip_of_files(all_files) st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) file_contents='' next_action='' for file in all_files: col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed with col1: if st.button("๐ŸŒ", key="md_"+file): # md emoji button with open(file, 'r') as f: file_contents = f.read() next_action='md' with col2: st.markdown(get_table_download_link(file), unsafe_allow_html=True) with col3: if st.button("๐Ÿ“‚", key="open_"+file): # open emoji button with open(file, 'r') as f: file_contents = f.read() next_action='open' with col4: if st.button("๐Ÿ”", key="read_"+file): # search emoji button with open(file, 'r') as f: file_contents = f.read() next_action='search' with col5: if st.button("๐Ÿ—‘", key="delete_"+file): os.remove(file) st.experimental_rerun() if len(file_contents) > 0: if next_action=='open': file_content_area = st.text_area("File Contents:", file_contents, height=500) if next_action=='md': st.markdown(file_contents) buttonlabel = '๐Ÿ”Run with Llama and GPT.' if st.button(key='RunWithLlamaandGPT', label = buttonlabel): user_prompt = file_contents # Llama versus GPT Battle! all="" try: st.write('๐Ÿ”Running with Llama.') response = StreamLLMChatResponse(file_contents) filename = generate_filename(user_prompt, "md") create_file(filename, file_contents, response, should_save) all=response #SpeechSynthesis(response) except: st.markdown('Llama is sleeping. Restart ETA 30 seconds.') # gpt try: st.write('๐Ÿ”Running with GPT.') response2 = chat_with_model(user_prompt, file_contents, model_choice) filename2 = generate_filename(file_contents, choice) create_file(filename2, user_prompt, response, should_save) all=all+response2 #SpeechSynthesis(response2) except: st.markdown('GPT is sleeping. Restart ETA 30 seconds.') SpeechSynthesis(all) if next_action=='search': file_content_area = st.text_area("File Contents:", file_contents, height=500) st.write('๐Ÿ”Running with Llama and GPT.') user_prompt = file_contents # Llama versus GPT Battle! all="" try: st.write('๐Ÿ”Running with Llama.') response = StreamLLMChatResponse(file_contents) filename = generate_filename(user_prompt, ".md") create_file(filename, file_contents, response, should_save) all=response #SpeechSynthesis(response) except: st.markdown('Llama is sleeping. Restart ETA 30 seconds.') # gpt try: st.write('๐Ÿ”Running with GPT.') response2 = chat_with_model(user_prompt, file_contents, model_choice) filename2 = generate_filename(file_contents, choice) create_file(filename2, user_prompt, response, should_save) all=all+response2 #SpeechSynthesis(response2) except: st.markdown('GPT is sleeping. Restart ETA 30 seconds.') SpeechSynthesis(all) # Function to encode file to base64 def get_base64_encoded_file(file_path): with open(file_path, "rb") as file: return base64.b64encode(file.read()).decode() # Function to create a download link def get_audio_download_link(file_path): base64_file = get_base64_encoded_file(file_path) return f'โฌ‡๏ธ Download Audio' # Compose a file sidebar of past encounters all_files = glob.glob("*.wav") all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order filekey = 'delall' if st.sidebar.button("๐Ÿ—‘ Delete All Audio", key=filekey): for file in all_files: os.remove(file) st.experimental_rerun() for file in all_files: col1, col2 = st.sidebar.columns([6, 1]) # adjust the ratio as needed with col1: st.markdown(file) if st.button("๐ŸŽต", key="play_" + file): # play emoji button audio_file = open(file, 'rb') audio_bytes = audio_file.read() st.audio(audio_bytes, format='audio/wav') #st.markdown(get_audio_download_link(file), unsafe_allow_html=True) #st.text_input(label="", value=file) with col2: if st.button("๐Ÿ—‘", key="delete_" + file): os.remove(file) st.experimental_rerun() # Feedback # Step: Give User a Way to Upvote or Downvote GiveFeedback=False if GiveFeedback: with st.expander("Give your feedback ๐Ÿ‘", expanded=False): feedback = st.radio("Step 8: Give your feedback", ("๐Ÿ‘ Upvote", "๐Ÿ‘Ž Downvote")) if feedback == "๐Ÿ‘ Upvote": st.write("You upvoted ๐Ÿ‘. Thank you for your feedback!") else: st.write("You downvoted ๐Ÿ‘Ž. Thank you for your feedback!") load_dotenv() st.write(css, unsafe_allow_html=True) st.header("Chat with documents :books:") user_question = st.text_input("Ask a question about your documents:") if user_question: process_user_input(user_question) with st.sidebar: st.subheader("Your documents") docs = st.file_uploader("import documents", accept_multiple_files=True) with st.spinner("Processing"): raw = pdf2txt(docs) if len(raw) > 0: length = str(len(raw)) text_chunks = txt2chunks(raw) vectorstore = vector_store(text_chunks) st.session_state.conversation = get_chain(vectorstore) st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing filename = generate_filename(raw, 'txt') create_file(filename, raw, '', should_save) # Relocated! Hope you like your new space - enjoy! # Display instructions and handle query parameters #st.markdown("## Glossary Lookup\nEnter a term in the URL query, like `?q=Nanotechnology` or `?query=Martian Syndicate`.") st.markdown(''' ### Mixable AI ๐Ÿƒ๐Ÿš€๐Ÿ“š ''') try: query_params = st.query_params #query = (query_params.get('q') or query_params.get('query') or [''])[0] query = (query_params.get('q') or query_params.get('query') or ['']) st.markdown('# Running query: ' + query) if query: search_glossary(query) except: st.markdown('No glossary lookup') # Display the glossary grid st.title("Card Games Glossary ๐ŸŽฒ") display_glossary_grid(roleplaying_glossary) st.title("๐ŸŽฒ๐Ÿ—บ๏ธ Card Game Universe") st.markdown("## Explore the vast universes of Dungeons and Dragons, Call of Cthulhu, GURPS, and more through interactive storytelling and encyclopedic knowledge.๐ŸŒ ") display_buttons_with_scores() display_images_and_wikipedia_summaries() # Assuming the transhuman_glossary and other setup code remains the same #st.write("Current Query Parameters:", st.query_params) #st.markdown("### Query Parameters - These Deep Link Map to Remixable Methods, Navigate or Trigger Functionalities") # Example: Using query parameters to navigate or trigger functionalities if 'action' in st.query_params: action = st.query_params()['action'][0] # Get the first (or only) 'action' parameter if action == 'show_message': st.success("Showing a message because 'action=show_message' was found in the URL.") elif action == 'clear': clear_query_params() st.experimental_rerun() # Handling repeated keys if 'multi' in st.query_params: multi_values = get_all_query_params('multi') st.write("Values for 'multi':", multi_values) # Manual entry for demonstration st.write("Enter query parameters in the URL like this: ?action=show_message&multi=1&multi=2") if 'query' in st.query_params: query = st.query_params['query'][0] # Get the query parameter # Display content or image based on the query display_content_or_image(query) # Add a clear query parameters button for convenience if st.button("Clear Query Parameters", key='ClearQueryParams'): # This will clear the browser URL's query parameters st.experimental_set_query_params st.experimental_rerun() # 18. Run AI Pipeline if __name__ == "__main__": whisper_main() main()