File size: 10,524 Bytes
a0ebdf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
003b1ad
94a8dcd
003b1ad
a0ebdf1
003b1ad
 
 
 
 
 
 
 
 
 
 
 
 
a0ebdf1
003b1ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0ebdf1
94a8dcd
 
a0ebdf1
94a8dcd
 
 
a0ebdf1
94a8dcd
 
 
 
a74315c
94a8dcd
a0ebdf1
94a8dcd
 
a0ebdf1
94a8dcd
 
a0ebdf1
94a8dcd
 
 
a0ebdf1
94a8dcd
a0ebdf1
94a8dcd
 
a0ebdf1
94a8dcd
 
 
 
003b1ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94a8dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a74315c
003b1ad
94a8dcd
a0ebdf1
 
 
 
 
94a8dcd
 
 
 
a0ebdf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
003b1ad
a0ebdf1
 
 
 
 
 
 
 
003b1ad
94a8dcd
 
 
 
 
 
 
 
 
003b1ad
94a8dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0ebdf1
003b1ad
a0ebdf1
 
 
 
 
 
 
 
003b1ad
a0ebdf1
a74315c
003b1ad
94a8dcd
a0ebdf1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import gradio as gr
import random
from datetime import datetime
import tempfile
import os
import edge_tts
import asyncio
import warnings
import pytz
import re
import json
import pandas as pd
from pathlib import Path
from gradio_client import Client

warnings.filterwarnings('ignore')

# Initialize constants
PAGE_SIZE = 10
FILE_DIR_PATH = "gallery"

# Initialize story starters
STORY_STARTERS = [
    ['Adventure', 'In a hidden temple deep in the Amazon...'],
    ['Mystery', 'The detective found an unusual note...'],
    ['Romance', 'Two strangers meet on a rainy evening...'],
    ['Sci-Fi', 'The space station received an unexpected signal...'],
    ['Fantasy', 'A magical portal appeared in the garden...'],
    ['Comedy-Sitcom', 'The new roommate arrived with seven emotional support animals...'],
    ['Comedy-Workplace', 'The office printer started sending mysterious messages...'],
    ['Comedy-Family', 'Grandma decided to become a social media influencer...'],
    ['Comedy-Supernatural', 'The ghost haunting the house was absolutely terrible at scaring people...'],
    ['Comedy-Travel', 'The GPS insisted on giving directions in interpretive dance descriptions...']
]

# Initialize client outside of interface definition
arxiv_client = None

def init_client():
    global arxiv_client
    if arxiv_client is None:
        arxiv_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    return arxiv_client

def save_story(story, audio_path):
    """Save story and audio to gallery"""
    try:
        # Create gallery directory if it doesn't exist
        gallery_dir = Path(FILE_DIR_PATH)
        gallery_dir.mkdir(exist_ok=True)
        
        # Generate timestamp for unique filename
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        
        # Get first line for title
        first_line = story.split('\n')[0].strip()
        safe_name = re.sub(r'[^\w\s-]', '', first_line)[:50]
        
        # Save story text as markdown
        story_path = gallery_dir / f"story_{timestamp}_{safe_name}.md"
        with open(story_path, "w") as f:
            f.write(f"# {first_line}\n\n{story}")
        
        # Copy audio file to gallery
        new_audio_path = None
        if audio_path:
            new_audio_path = gallery_dir / f"audio_{timestamp}_{safe_name}.mp3"
            os.system(f"cp {audio_path} {str(new_audio_path)}")
            
        return str(story_path), str(new_audio_path) if new_audio_path else None
    except Exception as e:
        print(f"Error saving to gallery: {str(e)}")
        return None, None

def list_all_outputs(generation_history):
    """Load all story generations for community view"""
    try:
        directory_path = FILE_DIR_PATH
        if not os.path.exists(directory_path):
            return "", gr.update(visible=True)
            
        # Get all matched pairs of story/audio files
        file_pairs = []
        for story_file in Path(directory_path).glob("story_*.md"):
            timestamp = story_file.stem.split('_')[1]
            audio_pattern = f"audio_{timestamp}_*.mp3"
            audio_files = list(Path(directory_path).glob(audio_pattern))
            
            if audio_files:  # Only include if we have both story and audio
                file_pairs.append((story_file, audio_files[0]))
        
        # Sort by modification time, newest first
        file_pairs.sort(key=lambda x: os.path.getmtime(x[0]), reverse=True)
        
        history_list = generation_history.split(',') if generation_history else []
        updated_files = [str(audio) for _, audio in file_pairs if str(audio) not in history_list]
        updated_history = updated_files + history_list
        
        return ','.join(updated_history), gr.update(visible=True)
    except Exception as e:
        print(f"Error loading community generations: {str(e)}")
        return "", gr.update(visible=True)

def increase_list_size(list_size):
    """Increase the number of visible community generations"""
    return list_size + PAGE_SIZE

def generate_story(prompt, model_choice):
    """Generate story using specified model"""
    try:
        client = init_client()
        if client is None:
            return "Error: Story generation service is not available."
        
        result = client.predict(
            prompt=prompt,
            llm_model_picked=model_choice,
            stream_outputs=True,
            api_name="/ask_llm"
        )
        return result
    except Exception as e:
        return f"Error generating story: {str(e)}"

async def generate_speech(text, voice="en-US-AriaNeural"):
    """Generate speech from text"""
    try:
        communicate = edge_tts.Communicate(text, voice)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
            tmp_path = tmp_file.name
            await communicate.save(tmp_path)
        return tmp_path
    except Exception as e:
        print(f"Error in text2speech: {str(e)}")
        return None

def process_story_and_audio(prompt, model_choice):
    """Process story, generate audio, and save to gallery"""
    try:
        # Generate story
        story = generate_story(prompt, model_choice)
        if isinstance(story, str) and story.startswith("Error"):
            return story, None
        
        # Generate audio
        audio_path = asyncio.run(generate_speech(story))
        
        # Save to gallery
        story_path, saved_audio_path = save_story(story, audio_path)
        
        return story, audio_path
    except Exception as e:
        return f"Error: {str(e)}", None

# Add CSS for community generations
css = '''
#live_gen:before {
    content: '';
    animation: svelte-z7cif2-pulseStart 1s cubic-bezier(.4,0,.6,1), svelte-z7cif2-pulse 2s cubic-bezier(.4,0,.6,1) 1s infinite;
    border: 2px solid var(--color-accent);
    background: transparent;
    z-index: var(--layer-1);
    pointer-events: none;
    position: absolute;
    height: 100%;
    width: 100%;
    border-radius: 7px;
}
#live_gen_items{
    max-height: 570px;
    overflow-y: scroll;
}
'''

# Create the Gradio interface
with gr.Blocks(title="AI Story Generator", css=css) as demo:
    gr.Markdown("""
    # 🎭 AI Story Generator & Narrator
    Generate creative stories, listen to them, and build your gallery!
    """)
    
    # Add hidden state for community generations
    generation_history = gr.Textbox(visible=False)
    list_size = gr.Number(value=PAGE_SIZE, visible=False)
    
    with gr.Row():
        with gr.Column(scale=3):
            with gr.Row():
                prompt_input = gr.Textbox(
                    label="Story Concept",
                    placeholder="Enter your story idea...",
                    lines=3
                )
            
            with gr.Row():
                model_choice = gr.Dropdown(
                    label="Model",
                    choices=[
                        "mistralai/Mixtral-8x7B-Instruct-v0.1",
                        "mistralai/Mistral-7B-Instruct-v0.2"
                    ],
                    value="mistralai/Mixtral-8x7B-Instruct-v0.1"
                )
                generate_btn = gr.Button("Generate Story")
            
            with gr.Row():
                story_output = gr.Textbox(
                    label="Generated Story",
                    lines=10,
                    interactive=False
                )
            
            with gr.Row():
                audio_output = gr.Audio(
                    label="Story Narration",
                    type="filepath"
                )
        
        # Sidebar with Story Starters and Community Generations
        with gr.Column(scale=1):
            gr.Markdown("### πŸ“š Story Starters")
            story_starters = gr.Dataframe(
                value=STORY_STARTERS,
                headers=["Category", "Starter"],
                interactive=False
            )
            
            # Community Generations section
            with gr.Column(elem_id="live_gen") as community_list:
                gr.Markdown("### 🎬 Community Stories")
                with gr.Column(elem_id="live_gen_items"):
                    @gr.render(inputs=[generation_history, list_size])
                    def show_output_list(generation_history, list_size):
                        history_list = generation_history.split(',') if generation_history else []
                        history_list_latest = history_list[:list_size]
                        
                        for audio_path in history_list_latest:
                            if not audio_path or not os.path.exists(audio_path):
                                continue
                                
                            try:
                                # Get corresponding story file
                                story_path = audio_path.replace('audio_', 'story_').replace('.mp3', '.md')
                                if not os.path.exists(story_path):
                                    continue
                                    
                                # Read story content
                                with open(story_path, 'r') as file:
                                    story_content = file.read()
                                    # Extract title from markdown
                                    title = story_content.split('\n')[0].replace('# ', '')
                                
                                with gr.Group():
                                    gr.Markdown(value=f"### {title}")
                                    gr.Audio(value=audio_path)
                            except Exception as e:
                                print(f"Error showing generation: {str(e)}")
                                continue
                
                load_more = gr.Button("Load More Stories")
                load_more.click(fn=increase_list_size, inputs=list_size, outputs=list_size)
    
    # Event handlers
    def update_prompt(evt: gr.SelectData):
        return STORY_STARTERS[evt.index[0]][1]
    
    story_starters.select(update_prompt, None, prompt_input)
    
    generate_btn.click(
        fn=process_story_and_audio,
        inputs=[prompt_input, model_choice],
        outputs=[story_output, audio_output]
    )
    
    # Auto-refresh for community generations
    demo.load(fn=list_all_outputs, inputs=generation_history, outputs=[generation_history, community_list], every=2)

if __name__ == "__main__":
    demo.launch()