Spaces:
Running
Running
File size: 8,794 Bytes
a0ebdf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import gradio as gr
import random
from datetime import datetime
import tempfile
import os
import edge_tts
import asyncio
import warnings
import pytz
import re
import json
import pandas as pd
from pathlib import Path
from gradio_client import Client
import hashlib
warnings.filterwarnings('ignore')
# Initialize story starters
STORY_STARTERS = [
['Adventure', 'In a hidden temple deep in the Amazon...'],
['Mystery', 'The detective found an unusual note...'],
['Romance', 'Two strangers meet on a rainy evening...'],
['Sci-Fi', 'The space station received an unexpected signal...'],
['Fantasy', 'A magical portal appeared in the garden...']
]
# Initialize client outside of interface definition
arxiv_client = None
def sanitize_filename(text, max_length=50):
"""Create a safe filename from text"""
# Get first line or first few words
first_line = text.split('\n')[0].strip()
# Remove special characters and spaces
safe_name = re.sub(r'[^\w\s-]', '', first_line)
safe_name = re.sub(r'[-\s]+', '-', safe_name).strip('-')
# Truncate to max length while keeping words intact
if len(safe_name) > max_length:
safe_name = safe_name[:max_length].rsplit('-', 1)[0]
return safe_name.lower()
def generate_unique_filename(base_name, timestamp, extension):
"""Generate a unique filename with timestamp and hash"""
# Create a hash of the base name to ensure uniqueness
name_hash = hashlib.md5(base_name.encode()).hexdigest()[:6]
return f"{timestamp}_{base_name}_{name_hash}{extension}"
def save_story(story, audio_path):
"""Save story and audio to gallery with improved naming"""
try:
# Create gallery directory if it doesn't exist
gallery_dir = Path("gallery")
gallery_dir.mkdir(exist_ok=True)
# Generate timestamp and safe filename base
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_name = sanitize_filename(story)
# Generate unique filenames
story_filename = generate_unique_filename(safe_name, timestamp, ".md")
audio_filename = generate_unique_filename(safe_name, timestamp, ".mp3")
# Save story text as markdown
story_path = gallery_dir / story_filename
with open(story_path, "w") as f:
f.write(f"# {safe_name.replace('-', ' ').title()}\n\n{story}")
# Copy audio file to gallery with new name
new_audio_path = None
if audio_path:
new_audio_path = gallery_dir / audio_filename
os.system(f"cp {audio_path} {str(new_audio_path)}")
return str(story_path), str(new_audio_path) if new_audio_path else None
except Exception as e:
print(f"Error saving to gallery: {str(e)}")
return None, None
def format_gallery_entry(timestamp, preview, story_path, audio_path):
"""Format gallery entry as markdown with audio controls"""
story_link = f"[{preview}]({story_path})"
if audio_path:
audio_html = f'<audio controls><source src="{audio_path}" type="audio/mp3">Your browser does not support the audio element.</audio>'
return f"{timestamp}: {story_link}\n{audio_html}"
return f"{timestamp}: {story_link}"
def load_gallery():
"""Load all stories and audio from gallery with markdown formatting"""
try:
gallery_dir = Path("gallery")
if not gallery_dir.exists():
return []
files = []
for story_file in sorted(gallery_dir.glob("*.md"), reverse=True):
# Extract timestamp from filename
timestamp = story_file.stem.split('_')[0]
# Read story content
with open(story_file) as f:
story_text = f.read()
# Extract preview from content (skip markdown header)
preview = story_text.split('\n\n', 1)[1][:100] + "..."
# Find matching audio file
audio_file = gallery_dir / f"{story_file.stem}.mp3"
# Format as markdown with audio controls
formatted_entry = format_gallery_entry(
timestamp,
preview,
str(story_file),
str(audio_file) if audio_file.exists() else None
)
files.append([
timestamp,
formatted_entry,
str(story_file),
str(audio_file) if audio_file.exists() else None
])
return files
except Exception as e:
print(f"Error loading gallery: {str(e)}")
return []
# Rest of your existing functions remain the same
def generate_story(prompt, model_choice):
"""Generate story using specified model"""
try:
client = init_client()
if client is None:
return "Error: Story generation service is not available."
result = client.predict(
prompt=prompt,
llm_model_picked=model_choice,
stream_outputs=True,
api_name="/ask_llm"
)
return result
except Exception as e:
return f"Error generating story: {str(e)}"
async def generate_speech(text, voice="en-US-AriaNeural"):
"""Generate speech from text"""
try:
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
except Exception as e:
print(f"Error in text2speech: {str(e)}")
return None
def process_story_and_audio(prompt, model_choice):
"""Process story, generate audio, and save to gallery"""
try:
# Generate story
story = generate_story(prompt, model_choice)
if isinstance(story, str) and story.startswith("Error"):
return story, None, None
# Generate audio
audio_path = asyncio.run(generate_speech(story))
# Save to gallery
story_path, saved_audio_path = save_story(story, audio_path)
return story, audio_path, load_gallery()
except Exception as e:
return f"Error: {str(e)}", None, None
# Create the Gradio interface
with gr.Blocks(title="AI Story Generator") as demo:
gr.Markdown("""
# π AI Story Generator & Narrator
Generate creative stories, listen to them, and build your gallery!
""")
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
prompt_input = gr.Textbox(
label="Story Concept",
placeholder="Enter your story idea...",
lines=3
)
with gr.Row():
model_choice = gr.Dropdown(
label="Model",
choices=[
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.2"
],
value="mistralai/Mixtral-8x7B-Instruct-v0.1"
)
generate_btn = gr.Button("Generate Story")
with gr.Row():
story_output = gr.Textbox(
label="Generated Story",
lines=10,
interactive=False
)
with gr.Row():
audio_output = gr.Audio(
label="Story Narration",
type="filepath"
)
# Sidebar with Story Starters and Gallery
with gr.Column(scale=1):
gr.Markdown("### π Story Starters")
story_starters = gr.Dataframe(
value=STORY_STARTERS,
headers=["Category", "Starter"],
interactive=False
)
gr.Markdown("### π¬ Story Gallery")
gallery = gr.HTML(value="")
def update_gallery():
gallery_entries = load_gallery()
if not gallery_entries:
return "<p>No stories in gallery yet.</p>"
return "<br>".join(entry[1] for entry in gallery_entries)
demo.load(update_gallery, outputs=[gallery])
# Event handlers
def update_prompt(evt: gr.SelectData):
return STORY_STARTERS[evt.index[0]][1]
story_starters.select(update_prompt, None, prompt_input)
generate_btn.click(
fn=process_story_and_audio,
inputs=[prompt_input, model_choice],
outputs=[story_output, audio_output, gallery]
)
if __name__ == "__main__":
demo.launch() |