File size: 6,840 Bytes
fef6f0f
 
 
4b3ee30
fef6f0f
 
 
4b3ee30
fef6f0f
 
 
 
 
4b3ee30
fef6f0f
4b3ee30
fef6f0f
 
 
4b3ee30
fef6f0f
 
 
 
 
 
 
 
 
 
4b3ee30
fef6f0f
 
 
 
 
 
4b3ee30
fef6f0f
 
a0010c7
fef6f0f
 
 
 
 
a0010c7
fef6f0f
 
9e1ef69
fef6f0f
 
 
 
 
 
 
 
 
 
 
 
 
a0010c7
fef6f0f
 
 
4b3ee30
 
 
fef6f0f
a0010c7
fef6f0f
9e1ef69
fef6f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3ee30
fef6f0f
 
 
 
 
 
 
4b3ee30
fef6f0f
 
 
 
 
 
 
 
 
 
 
 
4b3ee30
fef6f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3ee30
fef6f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3ee30
 
fef6f0f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
import random
import time
from datetime import datetime
import tempfile
import os
from moviepy.editor import ImageClip, concatenate_videoclips
from gradio_client import Client
from PIL import Image
import edge_tts
import asyncio
import warnings
import numpy as np

warnings.filterwarnings('ignore')

# Initialize the Gradio client for model access
client = Client("stabilityai/stable-diffusion-xl-base-1.0")
arxiv_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")

STORY_GENRES = [
    "Science Fiction",
    "Fantasy",
    "Mystery",
    "Romance",
    "Horror",
    "Adventure",
    "Historical Fiction",
    "Comedy"
]

STORY_STRUCTURES = {
    "Three Act": "Setup (Introduction, Inciting Incident) -> Confrontation (Rising Action, Climax) -> Resolution (Falling Action, Conclusion)",
    "Hero's Journey": "Ordinary World -> Call to Adventure -> Trials -> Transformation -> Return",
    "Five Act": "Exposition -> Rising Action -> Climax -> Falling Action -> Resolution",
    "Seven Point": "Hook -> Plot Turn 1 -> Pinch Point 1 -> Midpoint -> Pinch Point 2 -> Plot Turn 2 -> Resolution"
}

async def generate_speech(text, voice="en-US-AriaNeural"):
    """Generate speech from text using edge-tts"""
    try:
        communicate = edge_tts.Communicate(text, voice)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
            tmp_path = tmp_file.name
            await communicate.save(tmp_path)
        return tmp_path
    except Exception as e:
        print(f"Error in text2speech: {str(e)}")
        raise

def generate_story_prompt(base_prompt, genre, structure):
    """Generate an expanded story prompt based on genre and structure"""
    prompt = f"""Create a {genre} story using this concept: '{base_prompt}'
    Follow this structure: {STORY_STRUCTURES[structure]}
    Include vivid descriptions and sensory details.
    Make it engaging and suitable for visualization.
    Keep each scene description clear and detailed enough for image generation.
    Limit the story to 5-7 key scenes.
    """
    return prompt

def generate_story(prompt, model_choice):
    """Generate story using specified model"""
    try:
        result = arxiv_client.predict(
            prompt,
            model_choice,
            True,
            api_name="/ask_llm"
        )
        return result
    except Exception as e:
        return f"Error generating story: {str(e)}"

def generate_image_from_text(text_prompt):
    """Generate an image from text description"""
    try:
        result = client.predict(
            text_prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            width=768,
            height=512,
            api_name="/text2image"
        )
        return result
    except Exception as e:
        return None

def create_video_from_images(image_paths, durations):
    """Create video from a series of images"""
    clips = [ImageClip(img_path).set_duration(dur) for img_path, dur in zip(image_paths, durations)]
    final_clip = concatenate_videoclips(clips, method="compose")
    output_path = tempfile.mktemp(suffix=".mp4")
    final_clip.write_videofile(output_path, fps=24)
    return output_path

def process_story(story_text, num_scenes=5):
    """Break story into scenes for visualization"""
    sentences = story_text.split('.')
    scenes = []
    scene_length = max(1, len(sentences) // num_scenes)
    
    for i in range(0, len(sentences), scene_length):
        scene = '. '.join(sentences[i:i+scene_length]).strip()
        if scene:
            scenes.append(scene)
    
    return scenes[:num_scenes]

def story_generator_interface(prompt, genre, structure, model_choice, num_scenes, words_per_scene):
    """Main story generation and multimedia creation function"""
    
    # Generate expanded prompt
    story_prompt = generate_story_prompt(prompt, genre, structure)
    
    # Generate story
    story = generate_story(story_prompt, model_choice)
    
    # Process story into scenes
    scenes = process_story(story, num_scenes)
    
    # Generate images for each scene
    image_paths = []
    for scene in scenes:
        image = generate_image_from_text(scene)
        if image is not None:
            temp_path = tempfile.mktemp(suffix=".png")
            Image.fromarray(image).save(temp_path)
            image_paths.append(temp_path)
    
    # Generate speech
    audio_path = asyncio.run(generate_speech(story))
    
    # Create video
    scene_durations = [5.0] * len(image_paths)  # 5 seconds per scene
    video_path = create_video_from_images(image_paths, scene_durations)
    
    return story, image_paths, audio_path, video_path

# Create Gradio interface
with gr.Blocks(title="AI Story Generator & Visualizer") as demo:
    gr.Markdown("# ๐ŸŽญ AI Story Generator & Visualizer")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(
                label="Story Concept",
                placeholder="Enter your story idea...",
                lines=3
            )
            genre_input = gr.Dropdown(
                label="Genre",
                choices=STORY_GENRES,
                value="Fantasy"
            )
            structure_input = gr.Dropdown(
                label="Story Structure",
                choices=list(STORY_STRUCTURES.keys()),
                value="Three Act"
            )
            model_choice = gr.Dropdown(
                label="Model",
                choices=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.2"],
                value="mistralai/Mixtral-8x7B-Instruct-v0.1"
            )
            num_scenes = gr.Slider(
                label="Number of Scenes",
                minimum=3,
                maximum=7,
                value=5,
                step=1
            )
            words_per_scene = gr.Slider(
                label="Words per Scene",
                minimum=20,
                maximum=100,
                value=50,
                step=10
            )
            generate_btn = gr.Button("Generate Story & Media")
    
    with gr.Row():
        with gr.Column():
            story_output = gr.Textbox(
                label="Generated Story",
                lines=10,
                readonly=True
            )
        with gr.Column():
            gallery = gr.Gallery(label="Scene Visualizations")
    
    with gr.Row():
        audio_output = gr.Audio(label="Story Narration")
        video_output = gr.Video(label="Story Video")
    
    generate_btn.click(
        fn=story_generator_interface,
        inputs=[prompt_input, genre_input, structure_input, model_choice, num_scenes, words_per_scene],
        outputs=[story_output, gallery, audio_output, video_output]
    )

if __name__ == "__main__":
    demo.launch(reload=True)