awacke1's picture
Update app.py
ba9176f verified
raw
history blame
5.38 kB
import gradio as gr
import random
import time
from datetime import datetime
import tempfile
import os
import edge_tts
import asyncio
import warnings
from gradio_client import Client
warnings.filterwarnings('ignore')
# Initialize Gradio client
def initialize_clients():
try:
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
return client
except Exception as e:
print(f"Error initializing client: {str(e)}")
return None
if gr.NO_RELOAD:
CLIENT = initialize_clients()
STORY_GENRES = [
"Science Fiction",
"Fantasy",
"Mystery",
"Romance",
"Horror",
"Adventure",
"Historical Fiction",
"Comedy"
]
STORY_STRUCTURES = {
"Three Act": "Setup -> Confrontation -> Resolution",
"Hero's Journey": "Ordinary World -> Call to Adventure -> Trials -> Return",
"Five Act": "Exposition -> Rising Action -> Climax -> Falling Action -> Resolution",
"Seven Point": "Hook -> Plot Turn 1 -> Pinch Point 1 -> Midpoint -> Plot Turn 2 -> Resolution"
}
async def generate_speech(text, voice="en-US-AriaNeural"):
"""Generate speech from text using edge-tts"""
try:
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
except Exception as e:
print(f"Error in text2speech: {str(e)}")
return None
def generate_story_prompt(base_prompt, genre, structure):
"""Generate an expanded story prompt based on genre and structure"""
prompt = f"""Create a {genre} story using this concept: '{base_prompt}'
Follow this structure: {STORY_STRUCTURES[structure]}
Include vivid descriptions and sensory details.
Make it engaging and suitable for visualization.
Keep each scene description clear and detailed enough for image generation.
Limit the story to 5-7 key scenes.
"""
return prompt
def generate_story(prompt, model_choice):
"""Generate story using specified model"""
try:
if CLIENT is None:
return "Error: Story generation service is not available."
result = CLIENT.predict(
prompt,
model_choice,
True,
api_name="/ask_llm"
)
return result
except Exception as e:
return f"Error generating story: {str(e)}"
def story_generator_interface(prompt, genre, structure, model_choice, num_scenes, words_per_scene):
"""Main story generation and multimedia creation function"""
try:
# Generate expanded prompt
story_prompt = generate_story_prompt(prompt, genre, structure)
# Generate story
story = generate_story(story_prompt, model_choice)
if story.startswith("Error"):
return story, None
# Generate speech
audio_path = asyncio.run(generate_speech(story))
return story, audio_path
except Exception as e:
error_msg = f"An error occurred: {str(e)}"
return error_msg, None
# Create Gradio interface
with gr.Blocks(title="AI Story Generator") as demo:
gr.Markdown("""
# ๐ŸŽญ AI Story Generator
Generate creative stories with AI and listen to them!
""")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Story Concept",
placeholder="Enter your story idea...",
lines=3
)
genre_input = gr.Dropdown(
label="Genre",
choices=STORY_GENRES,
value="Fantasy"
)
structure_input = gr.Dropdown(
label="Story Structure",
choices=list(STORY_STRUCTURES.keys()),
value="Three Act"
)
model_choice = gr.Dropdown(
label="Model",
choices=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.2"],
value="mistralai/Mixtral-8x7B-Instruct-v0.1"
)
num_scenes = gr.Slider(
label="Number of Scenes",
minimum=3,
maximum=7,
value=5,
step=1
)
words_per_scene = gr.Slider(
label="Words per Scene",
minimum=20,
maximum=100,
value=50,
step=10
)
generate_btn = gr.Button("Generate Story")
with gr.Row():
with gr.Column():
story_output = gr.Textbox(
label="Generated Story",
lines=10,
interactive=False
)
with gr.Row():
audio_output = gr.Audio(
label="Story Narration",
type="filepath"
)
# Fixed the click event outputs
generate_btn.click(
fn=story_generator_interface,
inputs=[
prompt_input,
genre_input,
structure_input,
model_choice,
num_scenes,
words_per_scene
],
outputs=[
story_output,
audio_output
]
)
if __name__ == "__main__":
demo.launch(reload=True)