Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,84 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM
|
3 |
-
from diffusers import StableDiffusionPipeline, DiffusionPipeline
|
4 |
-
import torch
|
5 |
-
from PIL import Image
|
6 |
-
import numpy as np
|
7 |
-
import os
|
8 |
-
import tempfile
|
9 |
-
import moviepy.editor as mpe
|
10 |
-
import nltk
|
11 |
-
from pydub import AudioSegment
|
12 |
-
import warnings
|
13 |
-
import asyncio
|
14 |
-
import edge_tts
|
15 |
import random
|
16 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
import pytz
|
18 |
import re
|
19 |
import json
|
20 |
-
from gradio_client import Client
|
21 |
|
22 |
-
warnings.filterwarnings(
|
23 |
|
24 |
-
#
|
25 |
-
nltk.download('punkt')
|
26 |
-
|
27 |
-
# Initialize clients
|
28 |
arxiv_client = None
|
29 |
-
|
|
|
30 |
global arxiv_client
|
31 |
if arxiv_client is None:
|
32 |
arxiv_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
33 |
return arxiv_client
|
34 |
|
35 |
-
# File I/O Functions
|
36 |
-
def generate_filename(prompt, timestamp=None):
|
37 |
-
"""Generate a safe filename from prompt and timestamp"""
|
38 |
-
if timestamp is None:
|
39 |
-
timestamp = datetime.now(pytz.UTC).strftime("%Y%m%d_%H%M%S")
|
40 |
-
# Clean the prompt to create a safe filename
|
41 |
-
safe_prompt = re.sub(r'[^\w\s-]', '', prompt)[:50].strip()
|
42 |
-
return f"story_{timestamp}_{safe_prompt}.txt"
|
43 |
-
|
44 |
-
def save_story(story, prompt, filename=None):
|
45 |
-
"""Save story to file with metadata"""
|
46 |
-
if filename is None:
|
47 |
-
filename = generate_filename(prompt)
|
48 |
-
|
49 |
-
try:
|
50 |
-
with open(filename, 'w', encoding='utf-8') as f:
|
51 |
-
metadata = {
|
52 |
-
'timestamp': datetime.now().isoformat(),
|
53 |
-
'prompt': prompt,
|
54 |
-
'type': 'story'
|
55 |
-
}
|
56 |
-
f.write(json.dumps(metadata) + '\n---\n' + story)
|
57 |
-
return filename
|
58 |
-
except Exception as e:
|
59 |
-
print(f"Error saving story: {e}")
|
60 |
-
return None
|
61 |
-
|
62 |
-
def load_story(filename):
|
63 |
-
"""Load story and metadata from file"""
|
64 |
-
try:
|
65 |
-
with open(filename, 'r', encoding='utf-8') as f:
|
66 |
-
content = f.read()
|
67 |
-
parts = content.split('\n---\n')
|
68 |
-
if len(parts) == 2:
|
69 |
-
metadata = json.loads(parts[0])
|
70 |
-
story = parts[1]
|
71 |
-
return metadata, story
|
72 |
-
return None, content
|
73 |
-
except Exception as e:
|
74 |
-
print(f"Error loading story: {e}")
|
75 |
-
return None, None
|
76 |
-
|
77 |
-
# Story Generation Functions
|
78 |
def generate_story(prompt, model_choice):
|
79 |
"""Generate story using specified model"""
|
80 |
try:
|
81 |
-
client =
|
82 |
if client is None:
|
83 |
return "Error: Story generation service is not available."
|
84 |
|
@@ -110,115 +57,58 @@ def process_story_and_audio(prompt, model_choice):
|
|
110 |
# Generate story
|
111 |
story = generate_story(prompt, model_choice)
|
112 |
if isinstance(story, str) and story.startswith("Error"):
|
113 |
-
return story, None
|
114 |
-
|
115 |
-
# Save story
|
116 |
-
filename = save_story(story, prompt)
|
117 |
-
|
118 |
# Generate audio
|
119 |
audio_path = asyncio.run(generate_speech(story))
|
120 |
|
121 |
-
return story, audio_path
|
122 |
except Exception as e:
|
123 |
-
return f"Error: {str(e)}", None
|
124 |
-
|
125 |
-
# Main App Code (your existing code remains here)
|
126 |
-
# LLM Inference Class and other existing classes remain unchanged
|
127 |
-
class LLMInferenceNode:
|
128 |
-
# Your existing LLMInferenceNode implementation
|
129 |
-
pass
|
130 |
-
|
131 |
-
# Initialize models (your existing initialization code remains here)
|
132 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
133 |
-
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
134 |
|
135 |
-
#
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
)
|
141 |
-
|
142 |
-
# Stable Diffusion model
|
143 |
-
sd_pipe = StableDiffusionPipeline.from_pretrained(
|
144 |
-
"runwayml/stable-diffusion-v1-5",
|
145 |
-
torch_dtype=torch_dtype
|
146 |
-
).to(device)
|
147 |
-
|
148 |
-
# Create the enhanced Gradio interface
|
149 |
-
with gr.Blocks() as demo:
|
150 |
-
gr.Markdown("""# 🎨 AI Creative Suite
|
151 |
-
Generate videos, stories, and more with AI!
|
152 |
""")
|
153 |
|
154 |
-
with gr.
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
generate_button = gr.Button("Generate Video")
|
161 |
-
with gr.Column():
|
162 |
-
video_output = gr.Video(label="Generated Video")
|
163 |
-
|
164 |
-
generate_button.click(fn=process_pipeline, inputs=prompt_input, outputs=video_output)
|
165 |
-
|
166 |
-
# New story generation tab
|
167 |
-
with gr.Tab("Story Generation"):
|
168 |
-
with gr.Row():
|
169 |
-
with gr.Column():
|
170 |
-
story_prompt = gr.Textbox(
|
171 |
-
label="Story Concept",
|
172 |
-
placeholder="Enter your story idea...",
|
173 |
-
lines=3
|
174 |
-
)
|
175 |
-
model_choice = gr.Dropdown(
|
176 |
-
label="Model",
|
177 |
-
choices=[
|
178 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
179 |
-
"mistralai/Mistral-7B-Instruct-v0.2"
|
180 |
-
],
|
181 |
-
value="mistralai/Mixtral-8x7B-Instruct-v0.1"
|
182 |
-
)
|
183 |
-
generate_story_btn = gr.Button("Generate Story")
|
184 |
-
|
185 |
-
with gr.Row():
|
186 |
-
story_output = gr.Textbox(
|
187 |
-
label="Generated Story",
|
188 |
-
lines=10,
|
189 |
-
interactive=False
|
190 |
-
)
|
191 |
-
|
192 |
-
with gr.Row():
|
193 |
-
audio_output = gr.Audio(
|
194 |
-
label="Story Narration",
|
195 |
-
type="filepath"
|
196 |
-
)
|
197 |
-
filename_output = gr.Textbox(
|
198 |
-
label="Saved Filename",
|
199 |
-
interactive=False
|
200 |
-
)
|
201 |
-
|
202 |
-
generate_story_btn.click(
|
203 |
-
fn=process_story_and_audio,
|
204 |
-
inputs=[story_prompt, model_choice],
|
205 |
-
outputs=[story_output, audio_output, filename_output]
|
206 |
)
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
-
# Launch the app
|
223 |
if __name__ == "__main__":
|
224 |
-
demo.launch(
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import random
|
3 |
from datetime import datetime
|
4 |
+
import tempfile
|
5 |
+
import os
|
6 |
+
import edge_tts
|
7 |
+
import asyncio
|
8 |
+
import warnings
|
9 |
+
from gradio_client import Client
|
10 |
import pytz
|
11 |
import re
|
12 |
import json
|
|
|
13 |
|
14 |
+
warnings.filterwarnings('ignore')
|
15 |
|
16 |
+
# Initialize client outside of interface definition
|
|
|
|
|
|
|
17 |
arxiv_client = None
|
18 |
+
|
19 |
+
def init_client():
|
20 |
global arxiv_client
|
21 |
if arxiv_client is None:
|
22 |
arxiv_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
23 |
return arxiv_client
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def generate_story(prompt, model_choice):
|
26 |
"""Generate story using specified model"""
|
27 |
try:
|
28 |
+
client = init_client()
|
29 |
if client is None:
|
30 |
return "Error: Story generation service is not available."
|
31 |
|
|
|
57 |
# Generate story
|
58 |
story = generate_story(prompt, model_choice)
|
59 |
if isinstance(story, str) and story.startswith("Error"):
|
60 |
+
return story, None
|
61 |
+
|
|
|
|
|
|
|
62 |
# Generate audio
|
63 |
audio_path = asyncio.run(generate_speech(story))
|
64 |
|
65 |
+
return story, audio_path
|
66 |
except Exception as e:
|
67 |
+
return f"Error: {str(e)}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
# Create the Gradio interface
|
70 |
+
with gr.Blocks(title="AI Story Generator") as demo:
|
71 |
+
gr.Markdown("""
|
72 |
+
# 🎭 AI Story Generator & Narrator
|
73 |
+
Generate creative stories and listen to them!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
""")
|
75 |
|
76 |
+
with gr.Row():
|
77 |
+
with gr.Column():
|
78 |
+
prompt_input = gr.Textbox(
|
79 |
+
label="Story Concept",
|
80 |
+
placeholder="Enter your story idea...",
|
81 |
+
lines=3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
)
|
83 |
+
model_choice = gr.Dropdown(
|
84 |
+
label="Model",
|
85 |
+
choices=[
|
86 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
87 |
+
"mistralai/Mistral-7B-Instruct-v0.2"
|
88 |
+
],
|
89 |
+
value="mistralai/Mixtral-8x7B-Instruct-v0.1"
|
90 |
+
)
|
91 |
+
generate_btn = gr.Button("Generate Story")
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
story_output = gr.Textbox(
|
95 |
+
label="Generated Story",
|
96 |
+
lines=10,
|
97 |
+
interactive=False
|
98 |
+
)
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
audio_output = gr.Audio(
|
102 |
+
label="Story Narration",
|
103 |
+
type="filepath"
|
104 |
+
)
|
105 |
+
|
106 |
+
generate_btn.click(
|
107 |
+
fn=process_story_and_audio,
|
108 |
+
inputs=[prompt_input, model_choice],
|
109 |
+
outputs=[story_output, audio_output]
|
110 |
+
)
|
111 |
|
112 |
+
# Launch the app using the current pattern
|
113 |
if __name__ == "__main__":
|
114 |
+
demo.launch()
|