Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -14,9 +14,20 @@ import numpy as np
|
|
14 |
|
15 |
warnings.filterwarnings('ignore')
|
16 |
|
17 |
-
# Initialize
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
STORY_GENRES = [
|
22 |
"Science Fiction",
|
@@ -46,7 +57,7 @@ async def generate_speech(text, voice="en-US-AriaNeural"):
|
|
46 |
return tmp_path
|
47 |
except Exception as e:
|
48 |
print(f"Error in text2speech: {str(e)}")
|
49 |
-
|
50 |
|
51 |
def generate_story_prompt(base_prompt, genre, structure):
|
52 |
"""Generate an expanded story prompt based on genre and structure"""
|
@@ -62,7 +73,10 @@ def generate_story_prompt(base_prompt, genre, structure):
|
|
62 |
def generate_story(prompt, model_choice):
|
63 |
"""Generate story using specified model"""
|
64 |
try:
|
65 |
-
|
|
|
|
|
|
|
66 |
prompt,
|
67 |
model_choice,
|
68 |
True,
|
@@ -75,28 +89,41 @@ def generate_story(prompt, model_choice):
|
|
75 |
def generate_image_from_text(text_prompt):
|
76 |
"""Generate an image from text description"""
|
77 |
try:
|
78 |
-
|
|
|
|
|
|
|
79 |
text_prompt,
|
80 |
-
|
81 |
-
guidance_scale=7.5,
|
82 |
-
width=768,
|
83 |
-
height=512,
|
84 |
-
api_name="/text2image"
|
85 |
)
|
86 |
return result
|
87 |
except Exception as e:
|
|
|
88 |
return None
|
89 |
|
90 |
def create_video_from_images(image_paths, durations):
|
91 |
"""Create video from a series of images"""
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
def process_story(story_text, num_scenes=5):
|
99 |
"""Break story into scenes for visualization"""
|
|
|
|
|
|
|
100 |
sentences = story_text.split('.')
|
101 |
scenes = []
|
102 |
scene_length = max(1, len(sentences) // num_scenes)
|
@@ -110,33 +137,45 @@ def process_story(story_text, num_scenes=5):
|
|
110 |
|
111 |
def story_generator_interface(prompt, genre, structure, model_choice, num_scenes, words_per_scene):
|
112 |
"""Main story generation and multimedia creation function"""
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
# Create Gradio interface
|
142 |
with gr.Blocks(title="AI Story Generator & Visualizer") as demo:
|
|
|
14 |
|
15 |
warnings.filterwarnings('ignore')
|
16 |
|
17 |
+
# Initialize Gradio clients with public demo spaces
|
18 |
+
def initialize_clients():
|
19 |
+
try:
|
20 |
+
# Use a public Stable Diffusion demo space instead of SDXL
|
21 |
+
image_client = Client("gradio/stable-diffusion-2")
|
22 |
+
arxiv_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
23 |
+
return image_client, arxiv_client
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error initializing clients: {str(e)}")
|
26 |
+
return None, None
|
27 |
+
|
28 |
+
if gr.NO_RELOAD:
|
29 |
+
# Initialize clients in NO_RELOAD block to prevent multiple initializations
|
30 |
+
IMAGE_CLIENT, ARXIV_CLIENT = initialize_clients()
|
31 |
|
32 |
STORY_GENRES = [
|
33 |
"Science Fiction",
|
|
|
57 |
return tmp_path
|
58 |
except Exception as e:
|
59 |
print(f"Error in text2speech: {str(e)}")
|
60 |
+
return None
|
61 |
|
62 |
def generate_story_prompt(base_prompt, genre, structure):
|
63 |
"""Generate an expanded story prompt based on genre and structure"""
|
|
|
73 |
def generate_story(prompt, model_choice):
|
74 |
"""Generate story using specified model"""
|
75 |
try:
|
76 |
+
if ARXIV_CLIENT is None:
|
77 |
+
return "Error: Story generation service is not available."
|
78 |
+
|
79 |
+
result = ARXIV_CLIENT.predict(
|
80 |
prompt,
|
81 |
model_choice,
|
82 |
True,
|
|
|
89 |
def generate_image_from_text(text_prompt):
|
90 |
"""Generate an image from text description"""
|
91 |
try:
|
92 |
+
if IMAGE_CLIENT is None:
|
93 |
+
return None
|
94 |
+
|
95 |
+
result = IMAGE_CLIENT.predict(
|
96 |
text_prompt,
|
97 |
+
api_name="/predict" # Updated API endpoint for the public demo
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
return result
|
100 |
except Exception as e:
|
101 |
+
print(f"Error generating image: {str(e)}")
|
102 |
return None
|
103 |
|
104 |
def create_video_from_images(image_paths, durations):
|
105 |
"""Create video from a series of images"""
|
106 |
+
try:
|
107 |
+
if not image_paths:
|
108 |
+
return None
|
109 |
+
|
110 |
+
clips = [ImageClip(img_path).set_duration(dur) for img_path, dur in zip(image_paths, durations) if os.path.exists(img_path)]
|
111 |
+
if not clips:
|
112 |
+
return None
|
113 |
+
|
114 |
+
final_clip = concatenate_videoclips(clips, method="compose")
|
115 |
+
output_path = tempfile.mktemp(suffix=".mp4")
|
116 |
+
final_clip.write_videofile(output_path, fps=24)
|
117 |
+
return output_path
|
118 |
+
except Exception as e:
|
119 |
+
print(f"Error creating video: {str(e)}")
|
120 |
+
return None
|
121 |
|
122 |
def process_story(story_text, num_scenes=5):
|
123 |
"""Break story into scenes for visualization"""
|
124 |
+
if not story_text:
|
125 |
+
return []
|
126 |
+
|
127 |
sentences = story_text.split('.')
|
128 |
scenes = []
|
129 |
scene_length = max(1, len(sentences) // num_scenes)
|
|
|
137 |
|
138 |
def story_generator_interface(prompt, genre, structure, model_choice, num_scenes, words_per_scene):
|
139 |
"""Main story generation and multimedia creation function"""
|
140 |
+
try:
|
141 |
+
# Generate expanded prompt
|
142 |
+
story_prompt = generate_story_prompt(prompt, genre, structure)
|
143 |
+
|
144 |
+
# Generate story
|
145 |
+
story = generate_story(story_prompt, model_choice)
|
146 |
+
if story.startswith("Error"):
|
147 |
+
return story, None, None, None
|
148 |
+
|
149 |
+
# Process story into scenes
|
150 |
+
scenes = process_story(story, num_scenes)
|
151 |
+
|
152 |
+
# Generate images for each scene
|
153 |
+
image_paths = []
|
154 |
+
for scene in scenes:
|
155 |
+
image = generate_image_from_text(scene)
|
156 |
+
if image is not None:
|
157 |
+
if isinstance(image, (str, bytes)):
|
158 |
+
image_paths.append(image)
|
159 |
+
else:
|
160 |
+
temp_path = tempfile.mktemp(suffix=".png")
|
161 |
+
Image.fromarray(image).save(temp_path)
|
162 |
+
image_paths.append(temp_path)
|
163 |
+
|
164 |
+
# Generate speech
|
165 |
+
audio_path = asyncio.run(generate_speech(story))
|
166 |
+
|
167 |
+
# Create video if we have images
|
168 |
+
if image_paths:
|
169 |
+
scene_durations = [5.0] * len(image_paths) # 5 seconds per scene
|
170 |
+
video_path = create_video_from_images(image_paths, scene_durations)
|
171 |
+
else:
|
172 |
+
video_path = None
|
173 |
+
|
174 |
+
return story, image_paths, audio_path, video_path
|
175 |
+
|
176 |
+
except Exception as e:
|
177 |
+
error_msg = f"An error occurred: {str(e)}"
|
178 |
+
return error_msg, None, None, None
|
179 |
|
180 |
# Create Gradio interface
|
181 |
with gr.Blocks(title="AI Story Generator & Visualizer") as demo:
|