import gradio as gr import random from datetime import datetime import tempfile import os import edge_tts import asyncio import warnings import pytz import re import json import pandas as pd from pathlib import Path from gradio_client import Client import hashlib warnings.filterwarnings('ignore') # Initialize story starters STORY_STARTERS = [ ['Adventure', 'In a hidden temple deep in the Amazon...'], ['Mystery', 'The detective found an unusual note...'], ['Romance', 'Two strangers meet on a rainy evening...'], ['Sci-Fi', 'The space station received an unexpected signal...'], ['Fantasy', 'A magical portal appeared in the garden...'] ] # Initialize client outside of interface definition arxiv_client = None def sanitize_filename(text, max_length=50): """Create a safe filename from text""" # Get first line or first few words first_line = text.split('\n')[0].strip() # Remove special characters and spaces safe_name = re.sub(r'[^\w\s-]', '', first_line) safe_name = re.sub(r'[-\s]+', '-', safe_name).strip('-') # Truncate to max length while keeping words intact if len(safe_name) > max_length: safe_name = safe_name[:max_length].rsplit('-', 1)[0] return safe_name.lower() def generate_unique_filename(base_name, timestamp, extension): """Generate a unique filename with timestamp and hash""" # Create a hash of the base name to ensure uniqueness name_hash = hashlib.md5(base_name.encode()).hexdigest()[:6] return f"{timestamp}_{base_name}_{name_hash}{extension}" def save_story(story, audio_path): """Save story and audio to gallery with improved naming""" try: # Create gallery directory if it doesn't exist gallery_dir = Path("gallery") gallery_dir.mkdir(exist_ok=True) # Generate timestamp and safe filename base timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") safe_name = sanitize_filename(story) # Generate unique filenames story_filename = generate_unique_filename(safe_name, timestamp, ".md") audio_filename = generate_unique_filename(safe_name, timestamp, ".mp3") # Save story text as markdown story_path = gallery_dir / story_filename with open(story_path, "w") as f: f.write(f"# {safe_name.replace('-', ' ').title()}\n\n{story}") # Copy audio file to gallery with new name new_audio_path = None if audio_path: new_audio_path = gallery_dir / audio_filename os.system(f"cp {audio_path} {str(new_audio_path)}") return str(story_path), str(new_audio_path) if new_audio_path else None except Exception as e: print(f"Error saving to gallery: {str(e)}") return None, None def format_gallery_entry(timestamp, preview, story_path, audio_path): """Format gallery entry as markdown with audio controls""" story_link = f"[{preview}]({story_path})" if audio_path: audio_html = f'' return f"{timestamp}: {story_link}\n{audio_html}" return f"{timestamp}: {story_link}" def load_gallery(): """Load all stories and audio from gallery with markdown formatting""" try: gallery_dir = Path("gallery") if not gallery_dir.exists(): return [] files = [] for story_file in sorted(gallery_dir.glob("*.md"), reverse=True): # Extract timestamp from filename timestamp = story_file.stem.split('_')[0] # Read story content with open(story_file) as f: story_text = f.read() # Extract preview from content (skip markdown header) preview = story_text.split('\n\n', 1)[1][:100] + "..." # Find matching audio file audio_file = gallery_dir / f"{story_file.stem}.mp3" # Format as markdown with audio controls formatted_entry = format_gallery_entry( timestamp, preview, str(story_file), str(audio_file) if audio_file.exists() else None ) files.append([ timestamp, formatted_entry, str(story_file), str(audio_file) if audio_file.exists() else None ]) return files except Exception as e: print(f"Error loading gallery: {str(e)}") return [] # Rest of your existing functions remain the same def generate_story(prompt, model_choice): """Generate story using specified model""" try: client = init_client() if client is None: return "Error: Story generation service is not available." result = client.predict( prompt=prompt, llm_model_picked=model_choice, stream_outputs=True, api_name="/ask_llm" ) return result except Exception as e: return f"Error generating story: {str(e)}" async def generate_speech(text, voice="en-US-AriaNeural"): """Generate speech from text""" try: communicate = edge_tts.Communicate(text, voice) with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return tmp_path except Exception as e: print(f"Error in text2speech: {str(e)}") return None def process_story_and_audio(prompt, model_choice): """Process story, generate audio, and save to gallery""" try: # Generate story story = generate_story(prompt, model_choice) if isinstance(story, str) and story.startswith("Error"): return story, None, None # Generate audio audio_path = asyncio.run(generate_speech(story)) # Save to gallery story_path, saved_audio_path = save_story(story, audio_path) return story, audio_path, load_gallery() except Exception as e: return f"Error: {str(e)}", None, None # Create the Gradio interface with gr.Blocks(title="AI Story Generator") as demo: gr.Markdown(""" # 🎭 AI Story Generator & Narrator Generate creative stories, listen to them, and build your gallery! """) with gr.Row(): with gr.Column(scale=3): with gr.Row(): prompt_input = gr.Textbox( label="Story Concept", placeholder="Enter your story idea...", lines=3 ) with gr.Row(): model_choice = gr.Dropdown( label="Model", choices=[ "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.2" ], value="mistralai/Mixtral-8x7B-Instruct-v0.1" ) generate_btn = gr.Button("Generate Story") with gr.Row(): story_output = gr.Textbox( label="Generated Story", lines=10, interactive=False ) with gr.Row(): audio_output = gr.Audio( label="Story Narration", type="filepath" ) # Sidebar with Story Starters and Gallery with gr.Column(scale=1): gr.Markdown("### 📚 Story Starters") story_starters = gr.Dataframe( value=STORY_STARTERS, headers=["Category", "Starter"], interactive=False ) gr.Markdown("### 🎬 Story Gallery") gallery = gr.HTML(value="") def update_gallery(): gallery_entries = load_gallery() if not gallery_entries: return "

No stories in gallery yet.

" return "
".join(entry[1] for entry in gallery_entries) demo.load(update_gallery, outputs=[gallery]) # Event handlers def update_prompt(evt: gr.SelectData): return STORY_STARTERS[evt.index[0]][1] story_starters.select(update_prompt, None, prompt_input) generate_btn.click( fn=process_story_and_audio, inputs=[prompt_input, model_choice], outputs=[story_output, audio_output, gallery] ) if __name__ == "__main__": demo.launch()