|
import torch |
|
import transformers |
|
import gradio as gr |
|
from ragatouille import RAGPretrainedModel |
|
from huggingface_hub import InferenceClient |
|
|
|
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") |
|
|
|
generate_kwargs = dict( |
|
temperature = None, |
|
max_new_tokens = 512, |
|
top_p = None, |
|
do_sample = False, |
|
) |
|
|
|
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert") |
|
|
|
mark_text = '# 📚 Search Results\n' |
|
|
|
def rag_cleaner(inp): |
|
rank = inp['rank'] |
|
title = inp['document_metadata']['title'] |
|
content = inp['content'] |
|
return f"{rank}. <b> {title} </b> \n Abstract: {content}" |
|
|
|
def get_prompt_text(question, context, formatted = True): |
|
if formatted: |
|
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer what the question. Cite the titles of your sources when answering." |
|
message = f"Question: {question}" |
|
return f"<s>" + f"[INST] {sys_instruction} " + f" {message} [/INST] </s> " |
|
return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n" |
|
|
|
def get_references(question, retriever, k = 10): |
|
rag_out = retriever.search(query=question, k=k) |
|
return rag_out |
|
|
|
def get_rag(message): |
|
return get_references(message, RAG) |
|
|
|
with gr.Blocks(theme = gr.themes.Soft()) as demo: |
|
with gr.Group(): |
|
msg = gr.Textbox(label = 'Search') |
|
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True) |
|
input = gr.Textbox(show_label = False, visible = False) |
|
gr_md = gr.Markdown(mark_text) |
|
|
|
def update_with_rag_md(message): |
|
rag_out = get_rag(message) |
|
md_text_updated = mark_text |
|
for i in range(10): |
|
rag_answer = rag_out[i] |
|
title = rag_answer['document_metadata']['title'].replace('\n','') |
|
paper_title = f'''### [{title}](https://arxiv.org/abs/{rag_answer['document_id']})\n''' |
|
paper_abs = rag_answer['content'] |
|
md_text_updated += paper_title + paper_abs + '\n---------------\n'+ '\n' |
|
prompt = get_prompt_text(message, '\n\n'.join(rag_cleaner(out) for out in rag_out)) |
|
return md_text_updated, prompt |
|
|
|
def ask_llm(prompt): |
|
output = client.text_generation(prompt, **generate_kwargs, stream=False, details=False, return_full_text=False) |
|
output = output.lstrip(' \n']) if output.lstrip().startswith('\n') else output |
|
return gr.Textbox(output, visible = True) |
|
|
|
msg.submit(update_with_rag_md, msg, [gr_md, input]).success(ask_llm, input, output_text) |
|
|
|
demo.launch(debug = True) |
|
|