awacke1's picture
Create app.py
361f15f verified
import torch
import transformers
import gradio as gr
from ragatouille import RAGPretrainedModel
from huggingface_hub import InferenceClient
import re
from datetime import datetime
import json
import arxiv
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
retrieve_results = 20
show_examples = True
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None']
generate_kwargs = dict(
temperature = None,
max_new_tokens = 512,
top_p = None,
do_sample = False,
)
## RAG Model
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
try:
gr.Info("Setting up retriever, please wait...")
rag_initial_output = RAG.search("What is Generative AI in Healthcare?", k = 1)
gr.Info("Retriever working successfully!")
except:
gr.Warning("Retriever not working!")
## Header
mark_text = '# ๐Ÿฉบ๐Ÿ” Search Results\n'
header_text = "## ๐Ÿ“šArxiv๐Ÿ“–Paper๐Ÿ”Search - ๐Ÿ”๐Ÿ•ต๏ธโ€โ™€๏ธ Search, ๐Ÿ“๐Ÿ—ž๏ธ Summarize, โž• and ๐Ÿงฉ๐Ÿ”“ Solve ๐Ÿ”ฌ๐Ÿ“Š Research ๐Ÿค”โ“ Problems โœ๏ธ๐Ÿ“„ with ๐Ÿ“š๐Ÿ“ฐ Papers โž• and ๐Ÿค–๐Ÿง  RAG ๐Ÿง‘โ€๐Ÿซ๐Ÿฆพ AI โž• and โ“๐Ÿ’ฌ QA ๐Ÿ› ๏ธ๐Ÿ”ง Techniques \n"
try:
with open("README.md", "r") as f:
mdfile = f.read()
date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
match = re.search(date_pattern, mdfile)
date = match.group().split(': ')[1]
formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
header_text += f'Index Last Updated: {formatted_date}\n'
index_info = f"Semantic Search - up to {formatted_date}"
except:
index_info = "Semantic Search"
database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)']
## Arxiv API
arx_client = arxiv.Client()
is_arxiv_available = True
check_arxiv_result = get_arxiv_live_search("What is Self Rewarding AI and how can it be used in Multi-Agent Systems?", arx_client, retrieve_results)
if len(check_arxiv_result) == 0:
is_arxiv_available = False
print("Arxiv search not working, switching to default search ...")
database_choices = [index_info]
## Show examples
sample_outputs = {
'output_placeholder': 'The LLM will provide an answer to your question here...',
'search_placeholder': '''
1. What is MoE?
2. What are Multi Agent Systems?
3. What is Self Rewarding AI?
4. What is Semantic and Episodic memory?
5. What is AutoGen?
6. What is ChatDev?
7. What is Omniverse?
8. What is Lumiere?
9. What is SORA?
'''
}
output_placeholder = sample_outputs['output_placeholder']
md_text_initial = sample_outputs['search_placeholder']
def rag_cleaner(inp):
rank = inp['rank']
title = inp['document_metadata']['title']
content = inp['content']
date = inp['document_metadata']['_time']
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
if formatted:
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
message = f"Question: {question}"
if 'mistralai' in llm_model_picked:
return f"<s>" + f"[INST] {sys_instruction}" + f" {message}[/INST]"
elif 'gemma' in llm_model_picked:
return f"<bos><start_of_turn>user\n{sys_instruction}" + f" {message}<end_of_turn>\n"
return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
def get_references(question, retriever, k = retrieve_results):
rag_out = retriever.search(query=question, k=k)
return rag_out
def get_rag(message):
return get_references(message, RAG)
def SaveResponseAndRead(result):
documentHTML5='''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}
</script>
</head>
<body>
<h1>๐Ÿ”Š Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
'''
documentHTML5 = documentHTML5 + result
documentHTML5 = documentHTML5 + '''
</textarea>
<br>
<button onclick="readAloud()">๐Ÿ”Š Read Aloud</button>
</body>
</html>
'''
gr.HTML(documentHTML5)
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
prompt_text_from_data = ""
database_to_use = database_choice
if database_choice == index_info:
rag_out = get_rag(message)
else:
arxiv_search_success = True
try:
rag_out = get_arxiv_live_search(message, arx_client, retrieve_results)
if len(rag_out) == 0:
arxiv_search_success = False
except:
arxiv_search_success = False
if not arxiv_search_success:
gr.Warning("Arxiv Search not working, switching to semantic search ...")
rag_out = get_rag(message)
database_to_use = index_info
md_text_updated = mark_text
for i in range(retrieve_results):
rag_answer = rag_out[i]
if i < llm_results_use:
md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True)
prompt_text_from_data += f"{i+1}. {prompt_text}"
else:
md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use)
md_text_updated += md_text_paper
prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
return md_text_updated, prompt
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
model_disabled_text = "LLM Model is disabled"
output = ""
if llm_model_picked == 'None':
if stream_outputs:
for out in model_disabled_text:
output += out
yield output
return output
else:
return model_disabled_text
client = InferenceClient(llm_model_picked)
try:
stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False)
except:
gr.Warning("LLM Inference rate limit reached, try again later!")
return ""
if stream_outputs:
for response in stream:
output += response
SaveResponseAndRead(response)
yield output
return output
else:
return stream
with gr.Blocks(theme = gr.themes.Soft()) as demo:
header = gr.Markdown(header_text)
with gr.Group():
msg = gr.Textbox(label = 'Search', placeholder = 'What is Generative AI in Healthcare?')
with gr.Accordion("Advanced Settings", open=False):
with gr.Row(equal_height = True):
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
input = gr.Textbox(show_label = False, visible = False)
gr_md = gr.Markdown(mark_text + md_text_initial)
msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)
demo.queue().launch()