Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from collections import defaultdict
|
3 |
+
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import gradio as gr
|
6 |
+
import pandas as pd
|
7 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
10 |
+
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
11 |
+
|
12 |
+
plt.switch_backend("Agg")
|
13 |
+
|
14 |
+
EXAMPLE_MAP = {}
|
15 |
+
with open("examples.json", "r") as f:
|
16 |
+
example_json = json.load(f)
|
17 |
+
EXAMPLE_MAP = {x["text"]: x["label"] for x in example_json}
|
18 |
+
|
19 |
+
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
20 |
+
|
21 |
+
|
22 |
+
def group_by_entity(raw):
|
23 |
+
out = defaultdict(int)
|
24 |
+
for ent in raw:
|
25 |
+
out[ent["entity_group"]] += 1
|
26 |
+
# out["total"] = sum(out.values())
|
27 |
+
return out
|
28 |
+
|
29 |
+
|
30 |
+
def plot_to_figure(grouped):
|
31 |
+
fig = plt.figure()
|
32 |
+
plt.bar(x=list(grouped.keys()), height=list(grouped.values()))
|
33 |
+
plt.margins(0.2)
|
34 |
+
plt.subplots_adjust(bottom=0.4)
|
35 |
+
plt.xticks(rotation=90)
|
36 |
+
return fig
|
37 |
+
|
38 |
+
|
39 |
+
def ner(text):
|
40 |
+
raw = pipe(text)
|
41 |
+
ner_content = {
|
42 |
+
"text": text,
|
43 |
+
"entities": [
|
44 |
+
{
|
45 |
+
"entity": x["entity_group"],
|
46 |
+
"word": x["word"],
|
47 |
+
"score": x["score"],
|
48 |
+
"start": x["start"],
|
49 |
+
"end": x["end"],
|
50 |
+
}
|
51 |
+
for x in raw
|
52 |
+
],
|
53 |
+
}
|
54 |
+
grouped = group_by_entity(raw)
|
55 |
+
figure = plot_to_figure(grouped)
|
56 |
+
label = EXAMPLE_MAP.get(text, "Unknown")
|
57 |
+
|
58 |
+
meta = {
|
59 |
+
"entity_counts": grouped,
|
60 |
+
"entities": len(set(grouped.keys())),
|
61 |
+
"counts": sum(grouped.values()),
|
62 |
+
}
|
63 |
+
|
64 |
+
return (ner_content, meta, label, figure)
|
65 |
+
|
66 |
+
|
67 |
+
interface = gr.Interface(
|
68 |
+
ner,
|
69 |
+
inputs=gr.Textbox(label="Note text", value=""),
|
70 |
+
outputs=[
|
71 |
+
gr.HighlightedText(label="NER", combine_adjacent=True),
|
72 |
+
gr.JSON(label="Entity Counts"),
|
73 |
+
gr.Label(label="Rating"),
|
74 |
+
gr.Plot(label="Bar"),
|
75 |
+
],
|
76 |
+
examples=list(EXAMPLE_MAP.keys()),
|
77 |
+
allow_flagging="never",
|
78 |
+
)
|
79 |
+
|
80 |
+
interface.launch()
|