File size: 6,782 Bytes
4d37dc4
 
 
 
 
 
 
 
3d89f71
 
 
4d37dc4
 
 
 
3d89f71
4d37dc4
 
 
 
 
6530e47
 
3d89f71
d6e6796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f21323a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6e6796
 
 
 
 
 
 
 
 
 
 
7d9e94d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6530e47
 
4d37dc4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr

#api = gr.Interface.load("huggingface/EleutherAI/gpt-j-6B")
api = gr.Interface.load("models/bigscience/bloom")


def complete_with_gpt(text):
    # Use the last 50 characters of the text as context
    # return text[:-50] + api(text[-50:])
    # Use the last 100 characters of the text as context
    return text[:-100] + api(text[-100:])


with gr.Blocks() as demo:
    with gr.Row():
        textbox = gr.Textbox(placeholder="Type here and press enter...", lines=14)
        with gr.Column():
            btn = gr.Button("Generate")

    btn.click(complete_with_gpt, textbox, textbox)

    with gr.Row():
        gr.Markdown("""
        
# Outline of Exciting AI Developments! πŸ€–πŸ’»πŸ”¬

Here is an outline of some of the most exciting recent developments in AI:

## Language Models πŸ—£οΈ

πŸ† Bloom sets new record for most performant and efficient AI model in science! 🌸

### Comparison of Large Language Models

| Model Name        | Model Size (in Parameters) |
| ----------------- | -------------------------- |
| BigScience-tr11-176B | 176 billion |
| GPT-3             | 175 billion               |
| OpenAI's DALL-E 2.0 | 500 million               |
| NVIDIA's Megatron | 8.3 billion               |
| Transformer-XL    | 250 million               |
| XLNet             | 210 million               |

## ChatGPT Datasets πŸ“š

- WebText
- Common Crawl
- BooksCorpus
- English Wikipedia
- Toronto Books Corpus
- OpenWebText

## Big Science Model πŸš€

- πŸ“œ Papers:
  1. BLOOM: A 176B-Parameter Open-Access Multilingual Language Model [Paper](https://arxiv.org/abs/2211.05100)
  2. Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism [Paper](https://arxiv.org/abs/1909.08053)
  3. 8-bit Optimizers via Block-wise Quantization [Paper](https://arxiv.org/abs/2110.02861)
  4. Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation [Paper](https://arxiv.org/abs/2108.12409)
  5. [Other papers related to Big Science](https://huggingface.co/models?other=doi:10.57967/hf/0003)
  6. [217 other models optimized for use with Bloom](https://huggingface.co/models?other=bloom)

- πŸ“š Datasets:

- Universal Dependencies: A collection of annotated corpora for natural language processing in a range of languages, with a focus on dependency parsing.
  - [Universal Dependencies official website.](https://universaldependencies.org/)
  
- WMT 2014: The fourth edition of the Workshop on Statistical Machine Translation, featuring shared tasks on translating between English and various other languages.
  - [WMT14 website.](http://www.statmt.org/wmt14/)

- The Pile: An English language corpus of diverse text, sourced from various places on the internet.
  - [The Pile official website.](https://pile.eleuther.ai/)

- HumanEval: A dataset of English sentences, annotated with human judgments on a range of linguistic qualities.
  - [HumanEval: An Evaluation Benchmark for Language Understanding](https://github.com/google-research-datasets/humaneval) by Gabriel Ilharco, Daniel Loureiro, Pedro Rodriguez, and Afonso Mendes.

- FLORES-101: A dataset of parallel sentences in 101 languages, designed for multilingual machine translation.
  - [FLORES-101: A Massively Multilingual Parallel Corpus for Language Understanding](https://flores101.opennmt.net/) by Aman Madaan, Shruti Rijhwani, Raghav Gupta, and Mitesh M. Khapra.

- CrowS-Pairs: A dataset of sentence pairs, designed for evaluating the plausibility of generated text.
  - [CrowS-Pairs: A Challenge Dataset for Plausible Plausibility Judgments](https://github.com/stanford-cogsci/crows-pairs) by Andrea Madotto, Zhaojiang Lin, Chien-Sheng Wu, Pascale Fung, and Caiming Xiong.

- WikiLingua: A dataset of parallel sentences in 75 languages, sourced from Wikipedia.
  - [WikiLingua: A New Benchmark Dataset for Cross-Lingual Wikification](https://arxiv.org/abs/2105.08031) by Jiarui Yao, Yanqiao Zhu, Ruihan Bao, Guosheng Lin, Lidong Bing, and Bei Shi.

- MTEB: A dataset of English sentences, annotated with their entailment relationships with respect to other sentences.
  - [Multi-Task Evaluation Benchmark for Natural Language Inference](https://github.com/google-research-datasets/mteb) by MichaΕ‚ Lukasik, Marcin Junczys-Dowmunt, and Houda Bouamor.

- xP3: A dataset of English sentences, annotated with their paraphrase relationships with respect to other sentences.
  - [xP3: A Large-Scale Evaluation Benchmark for Paraphrase Identification in Context](https://github.com/nyu-dl/xp3) by Aniket Didolkar, James Mayfield, Markus Saers, and Jason Baldridge.

- DiaBLa: A dataset of English dialogue, annotated with dialogue acts.
  - [A Large-Scale Corpus for Conversation Disentanglement](https://github.com/HLTCHKUST/DiaBLA) by Samuel Broscheit, AntΓ³nio Branco, and AndrΓ© F. T. Martins.


- πŸ“š Dataset Papers with Code

  1. [Universal Dependencies](https://paperswithcode.com/dataset/universal-dependencies)
  2. [WMT 2014](https://paperswithcode.com/dataset/wmt-2014)
  3. [The Pile](https://paperswithcode.com/dataset/the-pile)
  4. [HumanEval](https://paperswithcode.com/dataset/humaneval)
  5. [FLORES-101](https://paperswithcode.com/dataset/flores-101)
  6. [CrowS-Pairs](https://paperswithcode.com/dataset/crows-pairs)
  7. [WikiLingua](https://paperswithcode.com/dataset/wikilingua)
  8. [MTEB](https://paperswithcode.com/dataset/mteb)
  9. [xP3](https://paperswithcode.com/dataset/xp3)
  10. [DiaBLa](https://paperswithcode.com/dataset/diabla)

# Deep RL ML Strategy 🧠

The AI strategies are:
- Language Model Preparation using Human Augmented with Supervised Fine Tuning πŸ€–
- Reward Model Training with Prompts Dataset Multi-Model Generate Data to Rank 🎁
- Fine Tuning with Reinforcement Reward and Distance Distribution Regret Score 🎯
- Proximal Policy Optimization Fine Tuning 🀝
- Variations - Preference Model Pretraining πŸ€”
- Use Ranking Datasets Sentiment - Thumbs Up/Down, Distribution πŸ“Š
- Online Version Getting Feedback πŸ’¬
- OpenAI - InstructGPT - Humans generate LM Training Text πŸ”
- DeepMind - Advantage Actor Critic Sparrow, GopherCite 🦜
- Reward Model Human Prefence Feedback πŸ†

For more information on specific techniques and implementations, check out the following resources:
- OpenAI's paper on [GPT-3](https://arxiv.org/abs/2005.14165) which details their Language Model Preparation approach
- DeepMind's paper on [SAC](https://arxiv.org/abs/1801.01290) which describes the Advantage Actor Critic algorithm
- OpenAI's paper on [Reward Learning](https://arxiv.org/abs/1810.06580) which explains their approach to training Reward Models
- OpenAI's blog post on [GPT-3's fine-tuning process](https://openai.com/blog/fine-tuning-gpt-3/)

        """)

demo.launch()