File size: 96,826 Bytes
15206a4 1d4b8d3 15206a4 1d4b8d3 15206a4 1d4b8d3 c83dd14 1d4b8d3 15206a4 569d4fc 15206a4 1d4b8d3 15206a4 1d4b8d3 15206a4 1d4b8d3 15206a4 1d4b8d3 15206a4 1d4b8d3 15206a4 1d4b8d3 15206a4 1d4b8d3 15206a4 1d4b8d3 15206a4 c83dd14 15206a4 c83dd14 15206a4 1d4b8d3 15206a4 1d4b8d3 15206a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 |
# --- Combined Imports ------------------------------------
import io
import os
import re
import base64
import glob
import logging
import random
import shutil
import time
import zipfile
import json
import asyncio
import aiofiles
from datetime import datetime
from collections import Counter
from dataclasses import dataclass
from io import BytesIO
from typing import Optional
import pandas as pd
import pytz
import streamlit as st
from PIL import Image
from reportlab.pdfgen import canvas
from reportlab.lib.utils import ImageReader
import fitz # PyMuPDF
# --- App Configuration (Choose one, adapted from App 2) ---
st.set_page_config(
page_title="Vision & Layout Titans ππΌοΈ",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
'About': "Combined App: Image->PDF Layout + AI Vision & SFT Titans π"
}
)
# Conditional imports for optional/heavy libraries
try:
import torch
from diffusers import StableDiffusionPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
_ai_libs_available = True
except ImportError:
_ai_libs_available = False
st.sidebar.warning("AI/ML libraries (torch, transformers, diffusers) not found. Some AI features disabled.")
try:
from openai import OpenAI
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
_openai_available = True
if not os.getenv('OPENAI_API_KEY'):
st.sidebar.warning("OpenAI API Key/Org ID not found in environment variables. GPT features disabled.")
_openai_available = False
except ImportError:
_openai_available = False
st.sidebar.warning("OpenAI library not found. GPT features disabled.")
except Exception as e:
_openai_available = False
st.sidebar.warning(f"OpenAI client error: {e}. GPT features disabled.")
import requests # Keep requests import
# --- Logging Setup (from App 2) --------------------------
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
# --- Session State Initialization (Combined) -------------
# From App 1
st.session_state.setdefault('layout_snapshots', []) # Renamed to avoid potential conflict
# From App 2
st.session_state.setdefault('history', [])
st.session_state.setdefault('builder', None)
st.session_state.setdefault('model_loaded', False)
st.session_state.setdefault('processing', {})
st.session_state.setdefault('asset_checkboxes', {})
st.session_state.setdefault('downloaded_pdfs', {})
st.session_state.setdefault('unique_counter', 0)
st.session_state.setdefault('selected_model_type', "Causal LM")
st.session_state.setdefault('selected_model', "None")
st.session_state.setdefault('cam0_file', None)
st.session_state.setdefault('cam1_file', None)
st.session_state.setdefault('characters', [])
st.session_state.setdefault('char_form_reset', False)
if 'asset_gallery_container' not in st.session_state:
st.session_state['asset_gallery_container'] = st.sidebar.empty()
st.session_state.setdefault('gallery_size', 2) # From App 2 gallery settings
# --- Dataclasses (from App 2) ----------------------------
@dataclass
class ModelConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
@property
def model_path(self):
return f"diffusion_models/{self.name}"
# --- Class Definitions (from App 2) -----------------------
# Simplified ModelBuilder and DiffusionBuilder if libraries are missing
if _ai_libs_available:
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.jokes = [
"Why did the AI go to therapy? Too many layers to unpack! π",
"Training complete! Time for a binary coffee break. β",
"I told my neural network a joke; it couldn't stop dropping bits! π€",
"I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' π",
"Debugging my code is like a stand-up routineβalways a series of exceptions! π"
]
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
with st.spinner(f"Loading {model_path}... β³"):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
st.success(f"Model loaded! π {random.choice(self.jokes)}")
return self
def save_model(self, path: str):
with st.spinner("Saving model... πΎ"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
st.success(f"Model saved at {path}! β
")
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
with st.spinner(f"Loading diffusion model {model_path}... β³"):
# Use float32 for broader compatibility, esp. CPU
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cuda" if torch.cuda.is_available() else "cpu")
if config:
self.config = config
st.success("Diffusion model loaded! π¨")
return self
def save_model(self, path: str):
with st.spinner("Saving diffusion model... πΎ"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.pipeline.save_pretrained(path)
st.success(f"Diffusion model saved at {path}! β
")
def generate(self, prompt: str):
# Adjust steps for CPU if needed
steps = 10 if torch.cuda.is_available() else 5 # Fewer steps for CPU demo
with st.spinner(f"Generating image with {steps} steps..."):
image = self.pipeline(prompt, num_inference_steps=steps).images[0]
return image
else: # Placeholder classes if AI libs are missing
class ModelBuilder:
def __init__(self): st.error("AI Libraries not available.")
def load_model(self, *args, **kwargs): pass
def save_model(self, *args, **kwargs): pass
class DiffusionBuilder:
def __init__(self): st.error("AI Libraries not available.")
def load_model(self, *args, **kwargs): pass
def save_model(self, *args, **kwargs): pass
def generate(self, *args, **kwargs): return Image.new("RGB", (64,64), "gray")
# --- Helper Functions (Combined and refined) -------------
def generate_filename(sequence, ext="png"):
# Use App 2's more robust version
timestamp = time.strftime('%Y%m%d_%H%M%S')
# Sanitize sequence name for filename
safe_sequence = re.sub(r'[^\w\-]+', '_', str(sequence))
return f"{safe_sequence}_{timestamp}.{ext}"
def pdf_url_to_filename(url):
# Use App 2's version
# Further sanitize - remove http(s) prefix and limit length
name = re.sub(r'^https?://', '', url)
name = re.sub(r'[<>:"/\\|?*]', '_', name)
return name[:100] + ".pdf" # Limit length
def get_download_link(file_path, mime_type="application/octet-stream", label="Download"):
# Use App 2's version, ensure file exists
if not os.path.exists(file_path):
return f"{label} (File not found)"
try:
with open(file_path, "rb") as f:
file_bytes = f.read()
b64 = base64.b64encode(file_bytes).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
except Exception as e:
logger.error(f"Error creating download link for {file_path}: {e}")
return f"{label} (Error)"
def zip_directory(directory_path, zip_path):
# Use App 2's version
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, _, files in os.walk(directory_path):
for file in files:
file_path = os.path.join(root, file)
zipf.write(file_path, os.path.relpath(file_path, os.path.dirname(directory_path)))
def get_model_files(model_type="causal_lm"):
# Use App 2's version
pattern = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
dirs = [d for d in glob.glob(pattern) if os.path.isdir(d)]
return dirs if dirs else ["None"]
def get_gallery_files(file_types=("png", "pdf", "jpg", "jpeg", "md", "txt")): # Expanded types
# Use App 2's version, ensure lowercase extensions
all_files = set()
for ext in file_types:
all_files.update(glob.glob(f"*.{ext.lower()}"))
all_files.update(glob.glob(f"*.{ext.upper()}")) # Include uppercase extensions too
return sorted(list(all_files))
def get_pdf_files():
# Use App 2's version
return sorted(glob.glob("*.pdf") + glob.glob("*.PDF"))
def download_pdf(url, output_path):
# Use App 2's version
try:
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
response = requests.get(url, stream=True, timeout=20, headers=headers) # Added user-agent, longer timeout
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
with open(output_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
logger.info(f"Successfully downloaded {url} to {output_path}")
return True
except requests.exceptions.RequestException as e:
logger.error(f"Failed to download {url}: {e}")
# Attempt to remove partially downloaded file
if os.path.exists(output_path):
try:
os.remove(output_path)
logger.info(f"Removed partially downloaded file: {output_path}")
except OSError as remove_error:
logger.error(f"Error removing partial file {output_path}: {remove_error}")
return False
except Exception as e:
logger.error(f"An unexpected error occurred during download of {url}: {e}")
if os.path.exists(output_path):
try: os.remove(output_path)
except: pass
return False
async def process_pdf_snapshot(pdf_path, mode="single", resolution_factor=2.0):
# Use App 2's version, added resolution control
start_time = time.time()
# Use a placeholder within the main app area for status during async operations
status_placeholder = st.empty()
status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... (0s)")
output_files = []
try:
doc = fitz.open(pdf_path)
matrix = fitz.Matrix(resolution_factor, resolution_factor)
num_pages_to_process = 0
if mode == "single":
num_pages_to_process = min(1, len(doc))
elif mode == "twopage":
num_pages_to_process = min(2, len(doc))
elif mode == "allpages":
num_pages_to_process = len(doc)
for i in range(num_pages_to_process):
page_start_time = time.time()
page = doc[i]
pix = page.get_pixmap(matrix=matrix)
# Use PDF name and page number in filename for clarity
base_name = os.path.splitext(os.path.basename(pdf_path))[0]
output_file = generate_filename(f"{base_name}_pg{i+1}_{mode}", "png")
await asyncio.to_thread(pix.save, output_file) # Run sync save in thread
output_files.append(output_file)
elapsed_page = int(time.time() - page_start_time)
status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... Page {i+1}/{num_pages_to_process} done ({elapsed_page}s)")
await asyncio.sleep(0.01) # Yield control briefly
doc.close()
elapsed = int(time.time() - start_time)
status_placeholder.success(f"PDF Snapshot ({mode}, {len(output_files)} files) completed in {elapsed}s!")
return output_files
except Exception as e:
logger.error(f"Failed to process PDF snapshot for {pdf_path}: {e}")
status_placeholder.error(f"Failed to process PDF {os.path.basename(pdf_path)}: {e}")
# Clean up any files created before the error
for f in output_files:
if os.path.exists(f): os.remove(f)
return []
async def process_gpt4o_ocr(image: Image.Image, output_file: str):
# Use App 2's version, check for OpenAI availability
if not _openai_available:
st.error("OpenAI OCR requires API key and library.")
return ""
start_time = time.time()
status_placeholder = st.empty()
status_placeholder.text("Processing GPT-4o OCR... (0s)")
buffered = BytesIO()
# Ensure image is in a compatible format (e.g., PNG, JPEG)
save_format = "PNG" if image.format != "JPEG" else "JPEG"
image.save(buffered, format=save_format)
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
messages = [{
"role": "user",
"content": [
{"type": "text", "text": "Extract text content from the image. Provide only the extracted text."}, # More specific prompt
{"type": "image_url", "image_url": {"url": f"data:image/{save_format.lower()};base64,{img_str}", "detail": "auto"}}
]
}]
try:
# Run OpenAI call in a separate thread to avoid blocking Streamlit's event loop
response = await asyncio.to_thread(
client.chat.completions.create,
model="gpt-4o", messages=messages, max_tokens=4000 # Increased tokens
)
result = response.choices[0].message.content or "" # Handle potential None result
elapsed = int(time.time() - start_time)
status_placeholder.success(f"GPT-4o OCR completed in {elapsed}s!")
async with aiofiles.open(output_file, "w", encoding='utf-8') as f: # Specify encoding
await f.write(result)
logger.info(f"GPT-4o OCR successful for {output_file}")
return result
except Exception as e:
logger.error(f"Failed to process image with GPT-4o: {e}")
status_placeholder.error(f"GPT-4o OCR Failed: {e}")
return f"Error during OCR: {str(e)}"
async def process_image_gen(prompt: str, output_file: str):
# Use App 2's version, check AI lib availability
if not _ai_libs_available:
st.error("Image Generation requires AI libraries.")
img = Image.new("RGB", (256, 256), "lightgray")
draw = ImageDraw.Draw(img)
draw.text((10, 10), "AI libs missing", fill="black")
img.save(output_file)
return img
start_time = time.time()
status_placeholder = st.empty()
status_placeholder.text("Processing Image Gen... (0s)")
# Ensure a pipeline is loaded, default to small one if necessary
pipeline = None
if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder) and st.session_state['builder'].pipeline:
pipeline = st.session_state['builder'].pipeline
else:
try:
with st.spinner("Loading default small diffusion model..."):
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cuda" if torch.cuda.is_available() else "cpu")
st.info("Loaded default small diffusion model for image generation.")
except Exception as e:
logger.error(f"Failed to load default diffusion model: {e}")
status_placeholder.error(f"Failed to load default diffusion model: {e}")
img = Image.new("RGB", (256, 256), "lightgray")
draw = ImageDraw.Draw(img)
draw.text((10, 10), "Model load error", fill="black")
img.save(output_file)
return img
try:
# Run generation in a thread
gen_image = await asyncio.to_thread(pipeline, prompt, num_inference_steps=15) # Slightly more steps
gen_image = gen_image.images[0] # Extract image from list
elapsed = int(time.time() - start_time)
status_placeholder.success(f"Image Gen completed in {elapsed}s!")
await asyncio.to_thread(gen_image.save, output_file) # Save in thread
logger.info(f"Image generation successful for {output_file}")
return gen_image
except Exception as e:
logger.error(f"Image generation failed: {e}")
status_placeholder.error(f"Image generation failed: {e}")
# Create placeholder error image
img = Image.new("RGB", (256, 256), "lightgray")
from PIL import ImageDraw
draw = ImageDraw.Draw(img)
draw.text((10, 10), f"Generation Error:\n{e}", fill="red")
await asyncio.to_thread(img.save, output_file)
return img
# --- GPT Processing Functions (from App 2, with checks) ---
def process_image_with_prompt(image: Image.Image, prompt: str, model="gpt-4o-mini", detail="auto"):
if not _openai_available: return "Error: OpenAI features disabled."
status_placeholder = st.empty()
status_placeholder.info(f"Processing image with GPT ({model})...")
buffered = BytesIO()
save_format = "PNG" if image.format != "JPEG" else "JPEG"
image.save(buffered, format=save_format)
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
messages = [{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/{save_format.lower()};base64,{img_str}", "detail": detail}}
]
}]
try:
response = client.chat.completions.create(model=model, messages=messages, max_tokens=1000) # Increased tokens
result = response.choices[0].message.content or ""
status_placeholder.success(f"GPT ({model}) image processing complete.")
logger.info(f"GPT ({model}) image processing successful.")
return result
except Exception as e:
logger.error(f"Error processing image with GPT ({model}): {e}")
status_placeholder.error(f"Error processing image with GPT ({model}): {e}")
return f"Error processing image with GPT: {str(e)}"
def process_text_with_prompt(text: str, prompt: str, model="gpt-4o-mini"):
if not _openai_available: return "Error: OpenAI features disabled."
status_placeholder = st.empty()
status_placeholder.info(f"Processing text with GPT ({model})...")
messages = [{"role": "user", "content": f"{prompt}\n\n---\n\n{text}"}] # Added separator
try:
response = client.chat.completions.create(model=model, messages=messages, max_tokens=2000) # Increased tokens
result = response.choices[0].message.content or ""
status_placeholder.success(f"GPT ({model}) text processing complete.")
logger.info(f"GPT ({model}) text processing successful.")
return result
except Exception as e:
logger.error(f"Error processing text with GPT ({model}): {e}")
status_placeholder.error(f"Error processing text with GPT ({model}): {e}")
return f"Error processing text with GPT: {str(e)}"
# --- Character Functions (from App 2) --------------------
def randomize_character_content():
# Use App 2's version
intro_templates = [
"{char} is a valiant knight who is silent and reserved, he looks handsome but aloof.",
"{char} is a mischievous thief with a heart of gold, always sneaking around but helping those in need.",
"{char} is a wise scholar who loves books more than people, often lost in thought.",
"{char} is a fiery warrior with a short temper, but fiercely loyal to friends.",
"{char} is a gentle healer who speaks softly, always carrying herbs and a warm smile."
]
greeting_templates = [
"You were startled by the sudden intrusion of a man into your home. 'I am from the knight's guild, and I have been ordered to arrest you.'",
"A shadowy figure steps into the light. 'I heard you needed helpβnameβs {char}, best thief in town.'",
"A voice calls from behind a stack of books. 'Oh, hello! Iβm {char}, didnβt see you thereβtoo many scrolls!'",
"A booming voice echoes, 'Iβm {char}, and Iβm here to fight for justiceβor at least a good brawl!'",
"A soft hand touches your shoulder. 'Iβm {char}, here to heal your woundsβdonβt worry, Iβve got you.'"
]
name = f"Character_{random.randint(1000, 9999)}"
gender = random.choice(["Male", "Female"])
intro = random.choice(intro_templates).format(char=name)
greeting = random.choice(greeting_templates).format(char=name)
return name, gender, intro, greeting
def save_character(character_data):
# Use App 2's version
characters = st.session_state.get('characters', [])
# Prevent duplicate names
if any(c['name'] == character_data['name'] for c in characters):
st.error(f"Character name '{character_data['name']}' already exists.")
return False
characters.append(character_data)
st.session_state['characters'] = characters
try:
with open("characters.json", "w", encoding='utf-8') as f:
json.dump(characters, f, indent=2) # Added indent for readability
logger.info(f"Saved character: {character_data['name']}")
return True
except IOError as e:
logger.error(f"Failed to save characters.json: {e}")
st.error(f"Failed to save character file: {e}")
return False
def load_characters():
# Use App 2's version
if not os.path.exists("characters.json"):
st.session_state['characters'] = []
return
try:
with open("characters.json", "r", encoding='utf-8') as f:
characters = json.load(f)
# Basic validation
if isinstance(characters, list):
st.session_state['characters'] = characters
logger.info(f"Loaded {len(characters)} characters.")
else:
st.session_state['characters'] = []
logger.warning("characters.json is not a list, resetting.")
os.remove("characters.json") # Remove invalid file
except (json.JSONDecodeError, IOError) as e:
logger.error(f"Failed to load or decode characters.json: {e}")
st.error(f"Error loading character file: {e}. Starting fresh.")
st.session_state['characters'] = []
# Attempt to backup corrupted file
try:
corrupt_filename = f"characters_corrupt_{int(time.time())}.json"
shutil.copy("characters.json", corrupt_filename)
logger.info(f"Backed up corrupted character file to {corrupt_filename}")
os.remove("characters.json")
except Exception as backup_e:
logger.error(f"Could not backup corrupted character file: {backup_e}")
# --- Utility: Clean stems (from App 1, needed for Image->PDF tab) ---
def clean_stem(fn: str) -> str:
# Make it slightly more robust
name = os.path.splitext(os.path.basename(fn))[0]
name = name.replace('-', ' ').replace('_', ' ')
# Remove common prefixes/suffixes if desired (optional)
# name = re.sub(r'^(scan|img|image)_?', '', name, flags=re.IGNORECASE)
# name = re.sub(r'_?\d+$', '', name) # Remove trailing numbers
return name.strip().title() # Title case
# --- PDF Creation: Image Sized + Captions (from App 1) ---
def make_image_sized_pdf(sources):
if not sources:
st.warning("No image sources provided for PDF generation.")
return None
buf = io.BytesIO()
# Use A4 size initially, will be overridden per page
c = canvas.Canvas(buf, pagesize=(595.27, 841.89)) # Default A4
try:
for idx, src in enumerate(sources, start=1):
status_placeholder = st.empty()
status_placeholder.info(f"Adding page {idx}/{len(sources)}: {os.path.basename(str(src))}...")
try:
# Handle both file paths and uploaded file objects
if isinstance(src, str): # path
if not os.path.exists(src):
logger.warning(f"Image file not found: {src}. Skipping.")
status_placeholder.warning(f"Skipping missing file: {os.path.basename(src)}")
continue
img_obj = Image.open(src)
filename = os.path.basename(src)
else: # uploaded file object (BytesIO wrapper)
src.seek(0) # Ensure reading from start
img_obj = Image.open(src)
filename = getattr(src, 'name', f'uploaded_image_{idx}')
src.seek(0) # Reset again just in case needed later
with img_obj: # Use context manager for PIL Image
iw, ih = img_obj.size
if iw <= 0 or ih <= 0:
logger.warning(f"Invalid image dimensions ({iw}x{ih}) for {filename}. Skipping.")
status_placeholder.warning(f"Skipping invalid image: {filename}")
continue
cap_h = 30 # Increased caption height
# Set page size based on image + caption height
pw, ph = iw, ih + cap_h
c.setPageSize((pw, ph))
# Draw image, ensuring it fits within iw, ih space above caption
# Use ImageReader for efficiency with ReportLab
img_reader = ImageReader(img_obj)
c.drawImage(img_reader, 0, cap_h, width=iw, height=ih, preserveAspectRatio=True, anchor='c', mask='auto')
# Draw Caption (cleaned filename)
caption = clean_stem(filename)
c.setFont('Helvetica', 12)
c.setFillColorRGB(0, 0, 0) # Black text
c.drawCentredString(pw / 2, cap_h / 2 + 3, caption) # Center vertically too
# Draw Page Number
c.setFont('Helvetica', 8)
c.setFillColorRGB(0.5, 0.5, 0.5) # Gray text
c.drawRightString(pw - 10, 8, f"Page {idx}")
c.showPage() # Finalize the page
status_placeholder.success(f"Added page {idx}/{len(sources)}: {filename}")
except (IOError, OSError, UnidentifiedImageError) as img_err:
logger.error(f"Error processing image {src}: {img_err}")
status_placeholder.error(f"Error adding page {idx}: {img_err}")
except Exception as e:
logger.error(f"Unexpected error adding page {idx} ({src}): {e}")
status_placeholder.error(f"Unexpected error on page {idx}: {e}")
c.save()
buf.seek(0)
if buf.getbuffer().nbytes < 100: # Check if PDF is basically empty
st.error("PDF generation resulted in an empty file. Check image files.")
return None
return buf.getvalue()
except Exception as e:
logger.error(f"Fatal error during PDF generation: {e}")
st.error(f"PDF Generation Failed: {e}")
return None
# --- Sidebar Gallery Update Function (from App 2) --------
def update_gallery():
container = st.session_state['asset_gallery_container']
container.empty() # Clear previous gallery rendering
with container.container(): # Use a container to manage layout
st.markdown("### Asset Gallery πΈπ")
st.session_state['gallery_size'] = st.slider("Max Items Shown", 2, 50, st.session_state.get('gallery_size', 10), key="gallery_size_slider")
cols = st.columns(2) # Use 2 columns in the sidebar
all_files = get_gallery_files() # Get currently available files
if not all_files:
st.info("No assets (images, PDFs, text files) found yet.")
return
files_to_display = all_files[:st.session_state['gallery_size']]
for idx, file in enumerate(files_to_display):
with cols[idx % 2]:
st.session_state['unique_counter'] += 1
unique_id = st.session_state['unique_counter']
basename = os.path.basename(file)
st.caption(basename) # Show filename as caption above preview
try:
file_ext = os.path.splitext(file)[1].lower()
if file_ext in ['.png', '.jpg', '.jpeg']:
st.image(Image.open(file), use_container_width=True)
elif file_ext == '.pdf':
doc = fitz.open(file)
# Generate preview only if file opens successfully
if len(doc) > 0:
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Smaller preview
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
st.image(img, use_container_width=True)
else:
st.warning("Empty PDF")
doc.close()
elif file_ext in ['.md', '.txt']:
with open(file, 'r', encoding='utf-8', errors='ignore') as f:
content_preview = f.read(200) # Show first 200 chars
st.code(content_preview + "...", language='markdown' if file_ext == '.md' else 'text')
# Actions for the file
checkbox_key = f"asset_cb_{file}_{unique_id}"
# Use get to safely access potentially missing keys after deletion
st.session_state['asset_checkboxes'][file] = st.checkbox(
"Select",
value=st.session_state['asset_checkboxes'].get(file, False),
key=checkbox_key
)
mime_map = {'.png': 'image/png', '.jpg': 'image/jpeg', '.jpeg': 'image/jpeg', '.pdf': 'application/pdf', '.txt': 'text/plain', '.md': 'text/markdown'}
mime_type = mime_map.get(file_ext, "application/octet-stream")
st.markdown(get_download_link(file, mime_type, "π₯"), unsafe_allow_html=True)
delete_key = f"delete_btn_{file}_{unique_id}"
if st.button("ποΈ", key=delete_key, help=f"Delete {basename}"):
try:
os.remove(file)
st.session_state['asset_checkboxes'].pop(file, None) # Remove from selection state
# Remove from layout_snapshots if present
if file in st.session_state.get('layout_snapshots', []):
st.session_state['layout_snapshots'].remove(file)
logger.info(f"Deleted asset: {file}")
st.success(f"Deleted {basename}")
st.rerun() # Rerun to refresh the gallery immediately
except OSError as e:
logger.error(f"Error deleting file {file}: {e}")
st.error(f"Could not delete {basename}")
except (fitz.fitz.FileNotFoundError, FileNotFoundError):
st.error(f"File not found: {basename}")
# Clean up state if file is missing
st.session_state['asset_checkboxes'].pop(file, None)
if file in st.session_state.get('layout_snapshots', []):
st.session_state['layout_snapshots'].remove(file)
except (fitz.fitz.FileDataError, fitz.fitz.RuntimeException) as pdf_err:
st.error(f"Corrupt PDF: {basename}")
logger.warning(f"Error opening PDF {file}: {pdf_err}")
except UnidentifiedImageError:
st.error(f"Invalid Image: {basename}")
logger.warning(f"Cannot identify image file {file}")
except Exception as e:
st.error(f"Error: {basename}")
logger.error(f"Error displaying asset {file}: {e}")
st.markdown("---") # Separator between items
if len(all_files) > st.session_state['gallery_size']:
st.caption(f"Showing {st.session_state['gallery_size']} of {len(all_files)} assets.")
# --- App Title -------------------------------------------
st.title("Vision & Layout Titans ππΌοΈπ")
st.markdown("Combined App: AI Vision/SFT Tools + Image-to-PDF Layout Generator")
# --- Main Application Tabs -------------------------------
tab_list = [
"Image->PDF Layout πΌοΈβ‘οΈπ", # Added from App 1
"Camera Snap π·",
"Download PDFs π₯",
"PDF Process π",
"Image Process πΌοΈ",
"Test OCR π",
"MD Gallery & Process π",
"Build Titan π±",
"Test Image Gen π¨",
"Character Editor π§βπ¨",
"Character Gallery πΌοΈ"
]
tabs = st.tabs(tab_list)
# --- Tab 1: Image -> PDF Layout (from App 1) -------------
with tabs[0]:
st.header("Image to PDF Layout Generator")
st.markdown("Upload or scan images, reorder them, and generate a PDF where each page matches the image dimensions and includes a simple caption.")
col1, col2 = st.columns(2)
with col1:
st.subheader("A. Scan or Upload Images")
# Camera scan specific to this tab
layout_cam = st.camera_input("πΈ Scan Document for Layout PDF", key="layout_cam")
if layout_cam:
central = pytz.timezone("US/Central") # Consider making timezone configurable
now = datetime.now(central)
# Use generate_filename helper
scan_name = generate_filename(f"layout_scan_{now.strftime('%a').upper()}", "png")
try:
# Save the uploaded file content
with open(scan_name, "wb") as f:
f.write(layout_cam.getvalue())
st.image(Image.open(scan_name), caption=f"Scanned: {scan_name}", use_container_width=True)
if scan_name not in st.session_state['layout_snapshots']:
st.session_state['layout_snapshots'].append(scan_name)
st.success(f"Scan saved as {scan_name}")
# No rerun needed, handled by Streamlit's camera widget update
except Exception as e:
st.error(f"Failed to save scan: {e}")
logger.error(f"Failed to save camera scan {scan_name}: {e}")
# File uploader specific to this tab
layout_uploads = st.file_uploader(
"π Upload PNG/JPG Images for Layout PDF", type=["png","jpg","jpeg"],
accept_multiple_files=True, key="layout_uploader"
)
# Display uploaded images immediately
if layout_uploads:
st.write(f"Uploaded {len(layout_uploads)} images:")
# Keep track of newly uploaded file objects for the DataFrame
st.session_state['layout_new_uploads'] = layout_uploads
with col2:
st.subheader("B. Review and Reorder")
# --- Build combined list for this tab's purpose ---
layout_records = []
# From layout-specific snapshots
processed_snapshots = set() # Keep track to avoid duplicates if script reruns
for idx, path in enumerate(st.session_state.get('layout_snapshots', [])):
if path not in processed_snapshots and os.path.exists(path):
try:
with Image.open(path) as im:
w, h = im.size
ar = round(w / h, 2) if h > 0 else 0
orient = "Square" if 0.9 <= ar <= 1.1 else ("Landscape" if ar > 1.1 else "Portrait")
layout_records.append({
"filename": os.path.basename(path),
"source": path, # Store path for snapshots
"width": w,
"height": h,
"aspect_ratio": ar,
"orientation": orient,
"order": idx, # Initial order based on addition
"type": "Scan"
})
processed_snapshots.add(path)
except Exception as e:
logger.warning(f"Could not process snapshot {path}: {e}")
st.warning(f"Skipping invalid snapshot: {os.path.basename(path)}")
# From layout-specific uploads (use the file objects directly)
# Access the newly uploaded files from session state if they exist
current_uploads = st.session_state.get('layout_new_uploads', [])
if current_uploads:
start_idx = len(layout_records)
for jdx, f_obj in enumerate(current_uploads, start=start_idx):
try:
f_obj.seek(0) # Reset pointer
with Image.open(f_obj) as im:
w, h = im.size
ar = round(w / h, 2) if h > 0 else 0
orient = "Square" if 0.9 <= ar <= 1.1 else ("Landscape" if ar > 1.1 else "Portrait")
layout_records.append({
"filename": f_obj.name,
"source": f_obj, # Store file object for uploads
"width": w,
"height": h,
"aspect_ratio": ar,
"orientation": orient,
"order": jdx, # Initial order
"type": "Upload"
})
f_obj.seek(0) # Reset pointer again for potential later use
except Exception as e:
logger.warning(f"Could not process uploaded file {f_obj.name}: {e}")
st.warning(f"Skipping invalid upload: {f_obj.name}")
if not layout_records:
st.info("Scan or upload images using the controls on the left.")
else:
# Create DataFrame
layout_df = pd.DataFrame(layout_records)
# Filter Options (moved here for clarity)
st.markdown("Filter by Orientation:")
dims = st.multiselect(
"Include orientations:", options=["Landscape","Portrait","Square"],
default=["Landscape","Portrait","Square"], key="layout_dims_filter"
)
if dims: # Apply filter only if options are selected
filtered_df = layout_df[layout_df['orientation'].isin(dims)].copy() # Use copy to avoid SettingWithCopyWarning
else:
filtered_df = layout_df.copy() # No filter applied
# Ensure 'order' column is integer for editing/sorting
filtered_df['order'] = filtered_df['order'].astype(int)
filtered_df = filtered_df.sort_values('order').reset_index(drop=True)
st.markdown("Edit 'Order' column or drag rows to set PDF page sequence:")
# Use st.data_editor for reordering
edited_df = st.data_editor(
filtered_df,
column_config={
"filename": st.column_config.TextColumn("Filename", disabled=True),
"source": None, # Hide source column
"width": st.column_config.NumberColumn("Width", disabled=True),
"height": st.column_config.NumberColumn("Height", disabled=True),
"aspect_ratio": st.column_config.NumberColumn("Aspect Ratio", format="%.2f", disabled=True),
"orientation": st.column_config.TextColumn("Orientation", disabled=True),
"type": st.column_config.TextColumn("Source Type", disabled=True),
"order": st.column_config.NumberColumn("Order", min_value=0, step=1, required=True),
},
hide_index=True,
use_container_width=True,
num_rows="dynamic", # Allow sorting/reordering by drag-and-drop
key="layout_editor"
)
# Sort by the edited 'order' column to get the final sequence
ordered_layout_df = edited_df.sort_values('order').reset_index(drop=True)
# Extract the sources in the correct order for PDF generation
# Need to handle both file paths (str) and uploaded file objects
ordered_sources_for_pdf = ordered_layout_df['source'].tolist()
# --- Generate & Download ---
st.subheader("C. Generate & Download PDF")
if st.button("ποΈ Generate Image-Sized PDF", key="generate_layout_pdf"):
if not ordered_sources_for_pdf:
st.warning("No images selected or available after filtering.")
else:
with st.spinner("Generating PDF... This might take a while for many images."):
pdf_bytes = make_image_sized_pdf(ordered_sources_for_pdf)
if pdf_bytes:
# Create filename for the PDF
central = pytz.timezone("US/Central") # Use same timezone
now = datetime.now(central)
prefix = now.strftime("%Y%m%d-%H%M%p")
# Create a basename from first few image names
stems = []
for src in ordered_sources_for_pdf[:4]: # Limit to first 4
if isinstance(src, str): stems.append(clean_stem(src))
else: stems.append(clean_stem(getattr(src, 'name', 'upload')))
basename = " - ".join(stems)
if not basename: basename = "Layout" # Fallback name
pdf_fname = f"{prefix}_{basename}.pdf"
pdf_fname = re.sub(r'[^\w\- \.]', '_', pdf_fname) # Sanitize filename
st.success(f"β
PDF ready: **{pdf_fname}**")
st.download_button(
"β¬οΈ Download PDF",
data=pdf_bytes,
file_name=pdf_fname,
mime="application/pdf",
key="download_layout_pdf"
)
# Add PDF Preview
st.markdown("#### Preview First Page")
try:
doc = fitz.open(stream=pdf_bytes, filetype='pdf')
if len(doc) > 0:
pix = doc[0].get_pixmap(matrix=fitz.Matrix(1.0, 1.0)) # Standard resolution preview
preview_img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
st.image(preview_img, caption=f"Preview of {pdf_fname} (Page 1)", use_container_width=True)
else:
st.warning("Generated PDF appears empty.")
doc.close()
except ImportError:
st.info("Install PyMuPDF (`pip install pymupdf`) to enable PDF previews.")
except Exception as preview_err:
st.warning(f"Could not generate PDF preview: {preview_err}")
logger.warning(f"PDF preview error for {pdf_fname}: {preview_err}")
else:
st.error("PDF generation failed. Check logs or image files.")
# --- Remaining Tabs (from App 2, adapted) ----------------
# --- Tab: Camera Snap ---
with tabs[1]:
st.header("Camera Snap π·")
st.subheader("Single Capture (Adds to General Gallery)")
cols = st.columns(2)
with cols[0]:
cam0_img = st.camera_input("Take a picture - Cam 0", key="main_cam0")
if cam0_img:
# Use generate_filename helper
filename = generate_filename("cam0_snap")
# Remove previous file for this camera if it exists
if st.session_state.get('cam0_file') and os.path.exists(st.session_state['cam0_file']):
try: os.remove(st.session_state['cam0_file'])
except OSError: pass # Ignore error if file is already gone
try:
with open(filename, "wb") as f: f.write(cam0_img.getvalue())
st.session_state['cam0_file'] = filename
st.session_state['history'].append(f"Snapshot from Cam 0: {filename}")
st.image(Image.open(filename), caption="Camera 0 Snap", use_container_width=True)
logger.info(f"Saved snapshot from Camera 0: {filename}")
st.success(f"Saved {filename}")
update_gallery() # Update sidebar gallery
st.rerun() # Rerun to reflect change immediately in gallery
except Exception as e:
st.error(f"Failed to save Cam 0 snap: {e}")
logger.error(f"Failed to save Cam 0 snap {filename}: {e}")
with cols[1]:
cam1_img = st.camera_input("Take a picture - Cam 1", key="main_cam1")
if cam1_img:
filename = generate_filename("cam1_snap")
if st.session_state.get('cam1_file') and os.path.exists(st.session_state['cam1_file']):
try: os.remove(st.session_state['cam1_file'])
except OSError: pass
try:
with open(filename, "wb") as f: f.write(cam1_img.getvalue())
st.session_state['cam1_file'] = filename
st.session_state['history'].append(f"Snapshot from Cam 1: {filename}")
st.image(Image.open(filename), caption="Camera 1 Snap", use_container_width=True)
logger.info(f"Saved snapshot from Camera 1: {filename}")
st.success(f"Saved {filename}")
update_gallery() # Update sidebar gallery
st.rerun()
except Exception as e:
st.error(f"Failed to save Cam 1 snap: {e}")
logger.error(f"Failed to save Cam 1 snap {filename}: {e}")
# --- Tab: Download PDFs ---
with tabs[2]:
st.header("Download PDFs π₯")
st.markdown("Download PDFs from URLs and optionally create image snapshots.")
if st.button("Load Example arXiv URLs π", key="load_examples"):
example_urls = [
"https://arxiv.org/pdf/2308.03892", # Example paper 1
"https://arxiv.org/pdf/1706.03762", # Attention is All You Need
"https://arxiv.org/pdf/2402.17764", # Example paper 2
# Add more diverse examples if needed
"https://www.un.org/esa/sustdev/publications/publications.html" # Example non-PDF page (will fail download)
"https://www.clickdimensions.com/links/ACCERL/" # Example direct PDF link
]
st.session_state['pdf_urls_input'] = "\n".join(example_urls)
url_input = st.text_area(
"Enter PDF URLs (one per line)",
value=st.session_state.get('pdf_urls_input', ""),
height=150,
key="pdf_urls_textarea"
)
if st.button("Robo-Download PDFs π€", key="download_pdfs_button"):
urls = [url.strip() for url in url_input.strip().split("\n") if url.strip()]
if not urls:
st.warning("Please enter at least one URL.")
else:
progress_bar = st.progress(0)
status_text = st.empty()
total_urls = len(urls)
download_count = 0
existing_pdfs = get_pdf_files() # Get current list once
for idx, url in enumerate(urls):
output_path = pdf_url_to_filename(url)
status_text.text(f"Processing {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
progress_bar.progress((idx + 1) / total_urls)
if output_path in existing_pdfs:
st.info(f"Already exists: {os.path.basename(output_path)}")
st.session_state['downloaded_pdfs'][url] = output_path # Still track it
# Ensure it's selectable in the gallery if it exists
if os.path.exists(output_path):
st.session_state['asset_checkboxes'][output_path] = st.session_state['asset_checkboxes'].get(output_path, False)
else:
if download_pdf(url, output_path):
st.session_state['downloaded_pdfs'][url] = output_path
logger.info(f"Downloaded PDF from {url} to {output_path}")
st.session_state['history'].append(f"Downloaded PDF: {output_path}")
st.session_state['asset_checkboxes'][output_path] = False # Default to unselected
download_count += 1
existing_pdfs.append(output_path) # Add to current list
else:
st.error(f"Failed to download: {url}")
status_text.success(f"Download process complete! Successfully downloaded {download_count} new PDFs.")
if download_count > 0:
update_gallery() # Update sidebar only if new files were added
st.rerun()
st.subheader("Create Snapshots from Gallery PDFs")
snapshot_mode = st.selectbox(
"Snapshot Mode",
["First Page (High-Res)", "First Two Pages (High-Res)", "All Pages (High-Res)", "First Page (Low-Res Preview)"],
key="pdf_snapshot_mode"
)
resolution_map = {
"First Page (High-Res)": 2.0,
"First Two Pages (High-Res)": 2.0,
"All Pages (High-Res)": 2.0,
"First Page (Low-Res Preview)": 1.0
}
mode_key_map = {
"First Page (High-Res)": "single",
"First Two Pages (High-Res)": "twopage",
"All Pages (High-Res)": "allpages",
"First Page (Low-Res Preview)": "single"
}
resolution = resolution_map[snapshot_mode]
mode_key = mode_key_map[snapshot_mode]
if st.button("Snapshot Selected PDFs πΈ", key="snapshot_selected_pdfs"):
selected_pdfs = [
path for path in get_gallery_files(['pdf']) # Only get PDFs
if st.session_state['asset_checkboxes'].get(path, False)
]
if not selected_pdfs:
st.warning("No PDFs selected in the sidebar gallery! Tick the 'Select' box for PDFs you want to snapshot.")
else:
st.info(f"Starting snapshot process for {len(selected_pdfs)} selected PDF(s)...")
snapshot_count = 0
total_snapshots_generated = 0
for pdf_path in selected_pdfs:
if not os.path.exists(pdf_path):
st.warning(f"File not found: {pdf_path}. Skipping.")
continue
# Run the async snapshot function
# Need to run asyncio event loop properly in Streamlit
new_snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key, resolution))
if new_snapshots:
snapshot_count += 1
total_snapshots_generated += len(new_snapshots)
# Display the generated snapshots
st.write(f"Snapshots for {os.path.basename(pdf_path)}:")
cols = st.columns(3)
for i, snap_path in enumerate(new_snapshots):
with cols[i % 3]:
st.image(Image.open(snap_path), caption=os.path.basename(snap_path), use_container_width=True)
st.session_state['asset_checkboxes'][snap_path] = False # Add to gallery, unselected
if total_snapshots_generated > 0:
st.success(f"Generated {total_snapshots_generated} snapshots from {snapshot_count} PDFs.")
update_gallery() # Refresh sidebar
st.rerun()
else:
st.warning("No snapshots were generated. Check logs or PDF files.")
# --- Tab: PDF Process ---
with tabs[3]:
st.header("PDF Process with GPT π")
st.markdown("Upload PDFs, view pages, and extract text using GPT vision models.")
if not _openai_available:
st.error("OpenAI features are disabled. Cannot process PDFs with GPT.")
else:
gpt_models = ["gpt-4o", "gpt-4o-mini"] # Add more if needed
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_process_gpt_model")
detail_level = st.selectbox("Image Detail Level for GPT", ["auto", "low", "high"], key="pdf_process_detail_level", help="Affects how GPT 'sees' the image. 'high' costs more.")
uploaded_pdfs_process = st.file_uploader("Upload PDF files to process", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader")
if uploaded_pdfs_process:
process_button = st.button("Process Uploaded PDFs with GPT", key="process_uploaded_pdfs_gpt")
if process_button:
combined_text_output = f"# GPT ({selected_gpt_model}) PDF Processing Results\n\n"
total_pages_processed = 0
output_placeholder = st.container() # Container for dynamic updates
for pdf_file in uploaded_pdfs_process:
output_placeholder.markdown(f"--- \n### Processing: {pdf_file.name}")
pdf_bytes = pdf_file.read()
temp_pdf_path = f"temp_process_{pdf_file.name}"
# Save temporary file
with open(temp_pdf_path, "wb") as f: f.write(pdf_bytes)
try:
doc = fitz.open(temp_pdf_path)
num_pages = len(doc)
output_placeholder.info(f"Found {num_pages} pages. Processing with {selected_gpt_model}...")
doc_text = f"## File: {pdf_file.name}\n\n"
for i, page in enumerate(doc):
page_start_time = time.time()
page_placeholder = output_placeholder.empty()
page_placeholder.info(f"Processing Page {i + 1}/{num_pages}...")
# Generate image from page
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) # Standard high-res for OCR
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
# Display image being processed
# cols = output_placeholder.columns(2)
# cols[0].image(img, caption=f"Page {i+1}", use_container_width=True)
# Process with GPT
prompt_pdf = "Extract all text content visible on this page. Maintain formatting like paragraphs and lists if possible."
gpt_text = process_image_with_prompt(img, prompt_pdf, model=selected_gpt_model, detail=detail_level)
doc_text += f"### Page {i + 1}\n\n{gpt_text}\n\n---\n\n"
total_pages_processed += 1
elapsed_page = int(time.time() - page_start_time)
page_placeholder.success(f"Page {i + 1}/{num_pages} processed in {elapsed_page}s.")
# cols[1].text_area(f"GPT Output (Page {i+1})", gpt_text, height=200, key=f"pdf_gpt_out_{pdf_file.name}_{i}")
combined_text_output += doc_text
doc.close()
except (fitz.fitz.FileDataError, fitz.fitz.RuntimeException) as pdf_err:
output_placeholder.error(f"Error opening PDF {pdf_file.name}: {pdf_err}. Skipping.")
logger.warning(f"Error opening PDF {pdf_file.name}: {pdf_err}")
except Exception as e:
output_placeholder.error(f"Error processing {pdf_file.name}: {str(e)}")
logger.error(f"Error processing PDF {pdf_file.name}: {e}")
finally:
# Clean up temporary file
if os.path.exists(temp_pdf_path):
try: os.remove(temp_pdf_path)
except OSError: pass
if total_pages_processed > 0:
st.markdown("--- \n### Combined Processing Results")
st.markdown(f"Processed a total of {total_pages_processed} pages.")
st.text_area("Full GPT Output", combined_text_output, height=400, key="combined_pdf_gpt_output")
# Save combined output to a file
output_filename = generate_filename("gpt_processed_pdfs", "md")
try:
with open(output_filename, "w", encoding="utf-8") as f:
f.write(combined_text_output)
st.success(f"Combined output saved to {output_filename}")
st.markdown(get_download_link(output_filename, "text/markdown", "Download Combined MD"), unsafe_allow_html=True)
# Add to gallery automatically
st.session_state['asset_checkboxes'][output_filename] = False
update_gallery()
except IOError as e:
st.error(f"Failed to save combined output file: {e}")
logger.error(f"Failed to save {output_filename}: {e}")
else:
st.warning("No pages were processed.")
# --- Tab: Image Process ---
with tabs[4]:
st.header("Image Process with GPT πΌοΈ")
st.markdown("Upload images and process them using custom prompts with GPT vision models.")
if not _openai_available:
st.error("OpenAI features are disabled. Cannot process images with GPT.")
else:
gpt_models_img = ["gpt-4o", "gpt-4o-mini"]
selected_gpt_model_img = st.selectbox("Select GPT Model", gpt_models_img, key="img_process_gpt_model")
detail_level_img = st.selectbox("Image Detail Level", ["auto", "low", "high"], key="img_process_detail_level")
prompt_img_process = st.text_area(
"Enter prompt for image processing",
"Describe this image in detail. What is happening? What objects are present?",
key="img_process_prompt_area"
)
uploaded_images_process = st.file_uploader(
"Upload image files to process", type=["png", "jpg", "jpeg"],
accept_multiple_files=True, key="image_process_uploader"
)
if uploaded_images_process:
process_img_button = st.button("Process Uploaded Images with GPT", key="process_uploaded_images_gpt")
if process_img_button:
combined_img_text_output = f"# GPT ({selected_gpt_model_img}) Image Processing Results\n\n**Prompt:** {prompt_img_process}\n\n---\n\n"
images_processed_count = 0
output_img_placeholder = st.container()
for img_file in uploaded_images_process:
output_img_placeholder.markdown(f"### Processing: {img_file.name}")
img_placeholder = output_img_placeholder.empty()
try:
img = Image.open(img_file)
cols_img = output_img_placeholder.columns(2)
cols_img[0].image(img, caption=f"Input: {img_file.name}", use_container_width=True)
# Process with GPT
gpt_img_text = process_image_with_prompt(img, prompt_img_process, model=selected_gpt_model_img, detail=detail_level_img)
cols_img[1].text_area(f"GPT Output", gpt_img_text, height=300, key=f"img_gpt_out_{img_file.name}")
combined_img_text_output += f"## Image: {img_file.name}\n\n{gpt_img_text}\n\n---\n\n"
images_processed_count += 1
output_img_placeholder.success(f"Processed {img_file.name}.")
except UnidentifiedImageError:
output_img_placeholder.error(f"Cannot identify image file: {img_file.name}. Skipping.")
logger.warning(f"Cannot identify image file {img_file.name}")
except Exception as e:
output_img_placeholder.error(f"Error processing image {img_file.name}: {str(e)}")
logger.error(f"Error processing image {img_file.name}: {e}")
if images_processed_count > 0:
st.markdown("--- \n### Combined Image Processing Results")
st.markdown(f"Processed a total of {images_processed_count} images.")
st.text_area("Full GPT Output (Images)", combined_img_text_output, height=400, key="combined_img_gpt_output")
# Save combined output
output_filename_img = generate_filename("gpt_processed_images", "md")
try:
with open(output_filename_img, "w", encoding="utf-8") as f:
f.write(combined_img_text_output)
st.success(f"Combined image processing output saved to {output_filename_img}")
st.markdown(get_download_link(output_filename_img, "text/markdown", "Download Combined MD"), unsafe_allow_html=True)
st.session_state['asset_checkboxes'][output_filename_img] = False
update_gallery()
except IOError as e:
st.error(f"Failed to save combined image output file: {e}")
logger.error(f"Failed to save {output_filename_img}: {e}")
else:
st.warning("No images were processed.")
# --- Tab: Test OCR ---
with tabs[5]:
st.header("Test OCR with GPT-4o π")
st.markdown("Select an image or PDF from the gallery and run GPT-4o OCR.")
if not _openai_available:
st.error("OpenAI features are disabled. Cannot perform OCR.")
else:
gallery_files_ocr = get_gallery_files(['png', 'jpg', 'jpeg', 'pdf'])
if not gallery_files_ocr:
st.warning("No images or PDFs in the gallery. Use Camera Snap or Download PDFs first.")
else:
selected_file_ocr = st.selectbox(
"Select Image or PDF from Gallery for OCR",
options=[""] + gallery_files_ocr, # Add empty option
format_func=lambda x: os.path.basename(x) if x else "Select a file...",
key="ocr_select_file"
)
if selected_file_ocr:
st.write(f"Selected: {os.path.basename(selected_file_ocr)}")
file_ext_ocr = os.path.splitext(selected_file_ocr)[1].lower()
image_to_ocr = None
page_info = ""
try:
if file_ext_ocr in ['.png', '.jpg', '.jpeg']:
image_to_ocr = Image.open(selected_file_ocr)
elif file_ext_ocr == '.pdf':
doc = fitz.open(selected_file_ocr)
if len(doc) > 0:
# Use first page for single OCR test
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) # High-res for OCR
image_to_ocr = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
page_info = " (Page 1)"
else:
st.warning("Selected PDF is empty.")
doc.close()
if image_to_ocr:
st.image(image_to_ocr, caption=f"Image for OCR{page_info}", use_container_width=True)
if st.button("Run GPT-4o OCR on this Image π", key="ocr_run_button"):
output_ocr_file = generate_filename(f"ocr_{os.path.splitext(os.path.basename(selected_file_ocr))[0]}", "txt")
st.session_state['processing']['ocr'] = True # Indicate processing
# Run async OCR function
ocr_result = asyncio.run(process_gpt4o_ocr(image_to_ocr, output_ocr_file))
st.session_state['processing']['ocr'] = False # Clear processing flag
if ocr_result and not ocr_result.startswith("Error"):
entry = f"OCR Test: {selected_file_ocr}{page_info} -> {output_ocr_file}"
st.session_state['history'].append(entry)
st.text_area("OCR Result", ocr_result, height=300, key="ocr_result_display")
if len(ocr_result) > 10: # Basic check if result seems valid
st.success(f"OCR output saved to {output_ocr_file}")
st.markdown(get_download_link(output_ocr_file, "text/plain", "Download OCR Text"), unsafe_allow_html=True)
# Add txt file to gallery
st.session_state['asset_checkboxes'][output_ocr_file] = False
update_gallery()
else:
st.warning("OCR output seems short or empty; file may not contain useful text.")
if os.path.exists(output_ocr_file): os.remove(output_ocr_file) # Clean up empty file
else:
st.error(f"OCR failed. {ocr_result}")
if os.path.exists(output_ocr_file): os.remove(output_ocr_file) # Clean up failed file
# Option for multi-page PDF OCR
if file_ext_ocr == '.pdf':
if st.button("Run OCR on All Pages of PDF ππ", key="ocr_all_pages_button"):
st.info("Starting full PDF OCR... This may take time.")
try:
doc = fitz.open(selected_file_ocr)
num_pages_pdf = len(doc)
if num_pages_pdf == 0:
st.warning("PDF is empty.")
else:
full_text_ocr = f"# Full OCR Results for {os.path.basename(selected_file_ocr)}\n\n"
total_pages_ocr_processed = 0
ocr_output_placeholder = st.container()
for i in range(num_pages_pdf):
page_ocr_start_time = time.time()
page_ocr_placeholder = ocr_output_placeholder.empty()
page_ocr_placeholder.info(f"OCR - Processing Page {i + 1}/{num_pages_pdf}...")
pix_ocr = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image_page_ocr = Image.frombytes("RGB", [pix_ocr.width, pix_ocr.height], pix_ocr.samples)
output_page_ocr_file = generate_filename(f"ocr_{os.path.splitext(os.path.basename(selected_file_ocr))[0]}_p{i+1}", "txt")
page_ocr_result = asyncio.run(process_gpt4o_ocr(image_page_ocr, output_page_ocr_file))
if page_ocr_result and not page_ocr_result.startswith("Error"):
full_text_ocr += f"## Page {i + 1}\n\n{page_ocr_result}\n\n---\n\n"
entry_page = f"OCR Multi: {selected_file_ocr} Page {i + 1} -> {output_page_ocr_file}"
st.session_state['history'].append(entry_page)
# Don't add individual page txt files to gallery to avoid clutter
if os.path.exists(output_page_ocr_file): os.remove(output_page_ocr_file)
total_pages_ocr_processed += 1
elapsed_ocr_page = int(time.time() - page_ocr_start_time)
page_ocr_placeholder.success(f"OCR - Page {i + 1}/{num_pages_pdf} done ({elapsed_ocr_page}s).")
else:
page_ocr_placeholder.error(f"OCR failed for Page {i+1}. Skipping.")
full_text_ocr += f"## Page {i + 1}\n\n[OCR FAILED]\n\n---\n\n"
if os.path.exists(output_page_ocr_file): os.remove(output_page_ocr_file)
doc.close()
if total_pages_ocr_processed > 0:
md_output_file_ocr = generate_filename(f"full_ocr_{os.path.splitext(os.path.basename(selected_file_ocr))[0]}", "md")
try:
with open(md_output_file_ocr, "w", encoding='utf-8') as f:
f.write(full_text_ocr)
st.success(f"Full PDF OCR complete. Combined output saved to {md_output_file_ocr}")
st.markdown(get_download_link(md_output_file_ocr, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
st.session_state['asset_checkboxes'][md_output_file_ocr] = False
update_gallery()
except IOError as e:
st.error(f"Failed to save combined OCR file: {e}")
else:
st.warning("No pages were successfully OCR'd from the PDF.")
except Exception as e:
st.error(f"Error during full PDF OCR: {e}")
logger.error(f"Full PDF OCR failed for {selected_file_ocr}: {e}")
except (fitz.fitz.FileDataError, fitz.fitz.RuntimeException) as pdf_err:
st.error(f"Cannot open PDF {os.path.basename(selected_file_ocr)}: {pdf_err}")
except UnidentifiedImageError:
st.error(f"Cannot identify image file: {os.path.basename(selected_file_ocr)}")
except FileNotFoundError:
st.error(f"File not found: {os.path.basename(selected_file_ocr)}. Refresh the gallery.")
except Exception as e:
st.error(f"An error occurred: {e}")
logger.error(f"Error in OCR tab for {selected_file_ocr}: {e}")
# --- Tab: MD Gallery & Process ---
with tabs[6]:
st.header("MD & Text File Gallery / GPT Processing π")
st.markdown("View, process, and combine Markdown (.md) and Text (.txt) files from the gallery using GPT.")
if not _openai_available:
st.error("OpenAI features are disabled. Cannot process text files with GPT.")
else:
gpt_models_md = ["gpt-4o", "gpt-4o-mini"]
selected_gpt_model_md = st.selectbox("Select GPT Model for Text Processing", gpt_models_md, key="md_process_gpt_model")
md_txt_files = get_gallery_files(['md', 'txt'])
if not md_txt_files:
st.warning("No Markdown (.md) or Text (.txt) files found in the gallery.")
else:
st.subheader("Individual File Processing")
selected_file_md = st.selectbox(
"Select MD/TXT File to Process",
options=[""] + md_txt_files,
format_func=lambda x: os.path.basename(x) if x else "Select a file...",
key="md_select_individual"
)
if selected_file_md:
st.write(f"Selected: {os.path.basename(selected_file_md)}")
try:
with open(selected_file_md, "r", encoding="utf-8", errors='ignore') as f:
content_md = f.read()
st.text_area("File Content Preview", content_md[:1000] + ("..." if len(content_md) > 1000 else ""), height=200, key="md_content_preview")
prompt_md_individual = st.text_area(
"Enter Prompt for this File",
"Summarize the key points of this text into a bulleted list.",
key="md_individual_prompt"
)
if st.button(f"Process {os.path.basename(selected_file_md)} with GPT", key=f"process_md_ind_{selected_file_md}"):
with st.spinner("Processing text with GPT..."):
result_text_md = process_text_with_prompt(content_md, prompt_md_individual, model=selected_gpt_model_md)
st.markdown("### GPT Processing Result")
st.markdown(result_text_md) # Display result as Markdown
# Save the result
output_filename_md = generate_filename(f"gpt_processed_{os.path.splitext(os.path.basename(selected_file_md))[0]}", "md")
try:
with open(output_filename_md, "w", encoding="utf-8") as f:
f.write(result_text_md)
st.success(f"Processing result saved to {output_filename_md}")
st.markdown(get_download_link(output_filename_md, "text/markdown", "Download Processed MD"), unsafe_allow_html=True)
st.session_state['asset_checkboxes'][output_filename_md] = False
update_gallery()
except IOError as e:
st.error(f"Failed to save processed MD file: {e}")
except FileNotFoundError:
st.error("Selected file not found. It might have been deleted.")
except Exception as e:
st.error(f"Error reading or processing file: {e}")
st.markdown("---")
st.subheader("Combine and Process Multiple Files")
st.write("Select MD/TXT files from the gallery to combine:")
selected_md_combine = {}
cols_md = st.columns(3)
for idx, md_file in enumerate(md_txt_files):
with cols_md[idx % 3]:
selected_md_combine[md_file] = st.checkbox(
f"{os.path.basename(md_file)}",
key=f"checkbox_md_combine_{md_file}"
)
prompt_md_combine = st.text_area(
"Enter Prompt for Combined Content",
"Synthesize the following texts into a cohesive summary. Identify the main themes and provide supporting details from the different sources.",
key="md_combine_prompt"
)
if st.button("Process Selected MD/TXT Files with GPT", key="process_combine_md"):
files_to_combine = [f for f, selected in selected_md_combine.items() if selected]
if not files_to_combine:
st.warning("No files selected for combination.")
else:
st.info(f"Combining {len(files_to_combine)} files...")
combined_content = ""
for md_file in files_to_combine:
try:
with open(md_file, "r", encoding="utf-8", errors='ignore') as f:
combined_content += f"\n\n## --- Source: {os.path.basename(md_file)} ---\n\n" + f.read()
except Exception as e:
st.error(f"Error reading {md_file}: {str(e)}. Skipping.")
logger.warning(f"Error reading {md_file} for combination: {e}")
if combined_content:
st.text_area("Preview Combined Content (First 2000 chars)", combined_content[:2000]+"...", height=200)
with st.spinner("Processing combined text with GPT..."):
result_text_combine = process_text_with_prompt(combined_content, prompt_md_combine, model=selected_gpt_model_md)
st.markdown("### Combined Processing Result")
st.markdown(result_text_combine)
# Save the combined result
output_filename_combine = generate_filename("gpt_combined_md_txt", "md")
try:
with open(output_filename_combine, "w", encoding="utf-8") as f:
f.write(f"# Combined Processing Result\n\n**Prompt:** {prompt_md_combine}\n\n**Sources:** {', '.join([os.path.basename(f) for f in files_to_combine])}\n\n---\n\n{result_text_combine}")
st.success(f"Combined processing result saved to {output_filename_combine}")
st.markdown(get_download_link(output_filename_combine, "text/markdown", "Download Combined MD"), unsafe_allow_html=True)
st.session_state['asset_checkboxes'][output_filename_combine] = False
update_gallery()
except IOError as e:
st.error(f"Failed to save combined processed file: {e}")
else:
st.error("Failed to read content from selected files.")
# --- Tab: Build Titan ---
with tabs[7]:
st.header("Build Titan Model π±")
st.markdown("Download and save base models for Causal LM or Diffusion tasks.")
if not _ai_libs_available:
st.error("AI/ML libraries (torch, transformers, diffusers) are required for this feature.")
else:
build_model_type = st.selectbox("Model Type to Build", ["Causal LM", "Diffusion"], key="build_type_select")
if build_model_type == "Causal LM":
default_causal = "HuggingFaceTB/SmolLM-135M" #"Qwen/Qwen1.5-0.5B-Chat" is larger
causal_models = [default_causal, "gpt2", "distilgpt2"] # Add more small options
base_model_select = st.selectbox(
"Select Base Causal LM", causal_models, index=causal_models.index(default_causal),
key="causal_model_select"
)
else: # Diffusion
default_diffusion = "OFA-Sys/small-stable-diffusion-v0" #"stabilityai/stable-diffusion-2-base" is large
diffusion_models = [default_diffusion, "google/ddpm-cat-256", "google/ddpm-celebahq-256"] # Add more small options
base_model_select = st.selectbox(
"Select Base Diffusion Model", diffusion_models, index=diffusion_models.index(default_diffusion),
key="diffusion_model_select"
)
model_name_build = st.text_input("Local Model Name", f"{build_model_type.lower().replace(' ','')}-titan-{os.path.basename(base_model_select)}-{int(time.time()) % 10000}", key="build_model_name")
domain_build = st.text_input("Optional: Target Domain Tag", "general", key="build_domain")
if st.button(f"Download & Save {build_model_type} Model β¬οΈ", key="download_build_model"):
if not model_name_build:
st.error("Please provide a local model name.")
else:
if build_model_type == "Causal LM":
config = ModelConfig(
name=model_name_build, base_model=base_model_select, size="small", domain=domain_build # Size is illustrative
)
builder = ModelBuilder()
else:
config = DiffusionConfig(
name=model_name_build, base_model=base_model_select, size="small", domain=domain_build
)
builder = DiffusionBuilder()
try:
builder.load_model(base_model_select, config)
builder.save_model(config.model_path) # Save to ./models/ or ./diffusion_models/
st.session_state['builder'] = builder # Store the loaded builder instance
st.session_state['model_loaded'] = True
st.session_state['selected_model_type'] = build_model_type
st.session_state['selected_model'] = config.model_path # Store path to local copy
st.session_state['history'].append(f"Built {build_model_type} model: {model_name_build} from {base_model_select}")
st.success(f"{build_model_type} model downloaded from {base_model_select} and saved locally to {config.model_path}! π")
# No automatic rerun, let user proceed
except Exception as e:
st.error(f"Failed to build model: {e}")
logger.error(f"Failed to build model {model_name_build} from {base_model_select}: {e}")
# --- Tab: Test Image Gen ---
with tabs[8]:
st.header("Test Image Generation π¨")
st.markdown("Generate images using a loaded Diffusion model.")
if not _ai_libs_available:
st.error("AI/ML libraries (torch, transformers, diffusers) are required for image generation.")
else:
# Check if a diffusion model is loaded in session state or select one
available_diffusion_models = get_model_files("diffusion")
loaded_diffusion_model_path = None
# Check if the currently loaded builder is diffusion
current_builder = st.session_state.get('builder')
if current_builder and isinstance(current_builder, DiffusionBuilder) and current_builder.pipeline:
loaded_diffusion_model_path = current_builder.config.model_path if current_builder.config else "Loaded Model"
# Prepare options for selection, prioritizing loaded model
model_options = ["Load Default Small Model"] + available_diffusion_models
current_selection_index = 0 # Default to loading small model
if loaded_diffusion_model_path and loaded_diffusion_model_path != "Loaded Model":
if loaded_diffusion_model_path not in model_options:
model_options.insert(1, loaded_diffusion_model_path) # Add if not already listed
current_selection_index = model_options.index(loaded_diffusion_model_path)
elif loaded_diffusion_model_path == "Loaded Model":
# A model is loaded, but we don't have its path (e.g., loaded directly)
model_options.insert(1, "Currently Loaded Model")
current_selection_index = 1
selected_diffusion_model = st.selectbox(
"Select Diffusion Model for Generation",
options=model_options,
index=current_selection_index,
key="imggen_model_select",
help="Select a locally saved model, or load the default small one."
)
# Button to explicitly load the selected model if it's not the active one
load_needed = False
if selected_diffusion_model == "Load Default Small Model":
load_needed = not (current_builder and isinstance(current_builder, DiffusionBuilder) and current_builder.config and current_builder.config.base_model == "OFA-Sys/small-stable-diffusion-v0")
elif selected_diffusion_model == "Currently Loaded Model":
load_needed = False # Already loaded
else: # A specific path is selected
load_needed = not (current_builder and isinstance(current_builder, DiffusionBuilder) and current_builder.config and current_builder.config.model_path == selected_diffusion_model)
if load_needed:
if st.button(f"Load '{os.path.basename(selected_diffusion_model)}' Model", key="imggen_load_sel"):
try:
if selected_diffusion_model == "Load Default Small Model":
model_to_load = "OFA-Sys/small-stable-diffusion-v0"
config = DiffusionConfig(name="default-small", base_model=model_to_load, size="small")
builder = DiffusionBuilder().load_model(model_to_load, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.session_state['selected_model_type'] = "Diffusion"
st.session_state['selected_model'] = config.model_path # This isn't saved, just track base
st.success("Default small diffusion model loaded.")
st.rerun()
else: # Load from local path
config = DiffusionConfig(name=os.path.basename(selected_diffusion_model), base_model="local", size="unknown", model_path=selected_diffusion_model)
builder = DiffusionBuilder().load_model(selected_diffusion_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.session_state['selected_model_type'] = "Diffusion"
st.session_state['selected_model'] = config.model_path
st.success(f"Loaded local model: {config.name}")
st.rerun()
except Exception as e:
st.error(f"Failed to load model {selected_diffusion_model}: {e}")
logger.error(f"Failed loading diffusion model {selected_diffusion_model}: {e}")
# Image Generation Prompt
prompt_imggen = st.text_area("Image Generation Prompt", "A futuristic cityscape at sunset, neon lights, flying cars", key="imggen_prompt")
if st.button("Generate Image π", key="imggen_run_button"):
# Check again if a model is effectively loaded and ready
current_builder = st.session_state.get('builder')
if not (current_builder and isinstance(current_builder, DiffusionBuilder) and current_builder.pipeline):
st.error("No diffusion model is loaded. Please select and load a model first.")
elif not prompt_imggen:
st.warning("Please enter a prompt.")
else:
output_imggen_file = generate_filename("image_gen", "png")
st.session_state['processing']['gen'] = True
# Run async generation
generated_image = asyncio.run(process_image_gen(prompt_imggen, output_imggen_file))
st.session_state['processing']['gen'] = False
if generated_image and os.path.exists(output_imggen_file):
entry = f"Image Gen: '{prompt_imggen[:30]}...' -> {output_imggen_file}"
st.session_state['history'].append(entry)
st.image(generated_image, caption=f"Generated: {os.path.basename(output_imggen_file)}", use_container_width=True)
st.success(f"Image saved to {output_imggen_file}")
st.markdown(get_download_link(output_imggen_file, "image/png", "Download Generated Image"), unsafe_allow_html=True)
# Add to gallery
st.session_state['asset_checkboxes'][output_imggen_file] = False
update_gallery()
# Consider st.rerun() if immediate gallery update is critical
else:
st.error("Image generation failed. Check logs.")
# --- Tab: Character Editor ---
with tabs[9]:
st.header("Character Editor π§βπ¨")
st.subheader("Create or Modify Your Character")
# Load existing characters for potential editing (optional)
load_characters()
existing_char_names = [c['name'] for c in st.session_state.get('characters', [])]
# Use a unique key for the form to allow reset
form_key = f"character_form_{st.session_state.get('char_form_reset_key', 0)}"
with st.form(key=form_key):
st.markdown("**Create New Character**")
# Randomize button inside the form
if st.form_submit_button("Randomize Content π²"):
# Increment key to force form reset with new random values
st.session_state['char_form_reset_key'] = st.session_state.get('char_form_reset_key', 0) + 1
st.rerun() # Rerun to get new random defaults in the reset form
# Get random defaults only once per form rendering cycle unless reset
rand_name, rand_gender, rand_intro, rand_greeting = randomize_character_content()
name_char = st.text_input(
"Name (3-25 chars, letters, numbers, underscore, hyphen, space)",
value=rand_name, max_chars=25, key="char_name_input"
)
gender_char = st.radio(
"Gender", ["Male", "Female"], index=["Male", "Female"].index(rand_gender),
key="char_gender_radio"
)
intro_char = st.text_area(
"Intro (Public description)", value=rand_intro, max_chars=300, height=100,
key="char_intro_area"
)
greeting_char = st.text_area(
"Greeting (First message)", value=rand_greeting, max_chars=300, height=100,
key="char_greeting_area"
)
tags_char = st.text_input("Tags (comma-separated)", "OC, friendly", key="char_tags_input")
submitted = st.form_submit_button("Create Character β¨")
if submitted:
# Validation
error = False
if not (3 <= len(name_char) <= 25):
st.error("Name must be between 3 and 25 characters.")
error = True
if not re.match(r'^[a-zA-Z0-9 _-]+$', name_char):
st.error("Name contains invalid characters.")
error = True
if name_char in existing_char_names:
st.error(f"Character name '{name_char}' already exists!")
error = True
if not intro_char or not greeting_char:
st.error("Intro and Greeting cannot be empty.")
error = True
if not error:
tag_list = [tag.strip() for tag in tags_char.split(',') if tag.strip()]
character_data = {
"name": name_char,
"gender": gender_char,
"intro": intro_char,
"greeting": greeting_char,
"created_at": datetime.now(pytz.timezone("US/Central")).strftime('%Y-%m-%d %H:%M:%S %Z'), # Added timezone
"tags": tag_list
}
if save_character(character_data):
st.success(f"Character '{name_char}' created successfully!")
# Increment key to reset form for next creation
st.session_state['char_form_reset_key'] = st.session_state.get('char_form_reset_key', 0) + 1
st.rerun() # Rerun to clear form and update gallery tab
# --- Tab: Character Gallery ---
with tabs[10]:
st.header("Character Gallery πΌοΈ")
# Load characters every time the tab is viewed
load_characters()
characters_list = st.session_state.get('characters', [])
if not characters_list:
st.warning("No characters created yet. Use the Character Editor tab!")
else:
st.subheader(f"Your Characters ({len(characters_list)})")
st.markdown("View and manage your created characters.")
# Search/Filter (Optional Enhancement)
search_term = st.text_input("Search Characters by Name", key="char_gallery_search")
if search_term:
characters_list = [c for c in characters_list if search_term.lower() in c['name'].lower()]
cols_char_gallery = st.columns(3) # Adjust number of columns as needed
chars_to_delete = [] # Store names to delete after iteration
for idx, char in enumerate(characters_list):
with cols_char_gallery[idx % 3]:
with st.container(border=True): # Add border to each character card
st.markdown(f"**{char['name']}**")
st.caption(f"Gender: {char.get('gender', 'N/A')}") # Use .get for safety
st.markdown("**Intro:**")
st.markdown(f"> {char.get('intro', '')}") # Blockquote style
st.markdown("**Greeting:**")
st.markdown(f"> {char.get('greeting', '')}")
st.caption(f"Tags: {', '.join(char.get('tags', ['N/A']))}")
st.caption(f"Created: {char.get('created_at', 'N/A')}")
# Delete Button
delete_key_char = f"delete_char_{char['name']}_{idx}" # More unique key
if st.button(f"Delete {char['name']}", key=delete_key_char, type="primary"):
chars_to_delete.append(char['name']) # Mark for deletion
# Process deletions after iterating
if chars_to_delete:
current_characters = st.session_state.get('characters', [])
updated_characters = [c for c in current_characters if c['name'] not in chars_to_delete]
st.session_state['characters'] = updated_characters
try:
with open("characters.json", "w", encoding='utf-8') as f:
json.dump(updated_characters, f, indent=2)
logger.info(f"Deleted characters: {', '.join(chars_to_delete)}")
st.success(f"Deleted characters: {', '.join(chars_to_delete)}")
st.rerun() # Rerun to reflect changes
except IOError as e:
logger.error(f"Failed to save characters.json after deletion: {e}")
st.error("Failed to update character file after deletion.")
# --- Footer and Persistent Sidebar Elements ------------
# Update Sidebar Gallery (Call this at the end to reflect all changes)
update_gallery()
# Action Logs in Sidebar
st.sidebar.subheader("Action Logs π")
log_expander = st.sidebar.expander("View Logs", expanded=False)
with log_expander:
log_text = "\n".join([f"{record.asctime} - {record.levelname} - {record.message}" for record in log_records[-20:]]) # Show last 20 logs
st.code(log_text, language='log')
# History in Sidebar
st.sidebar.subheader("Session History π")
history_expander = st.sidebar.expander("View History", expanded=False)
with history_expander:
# Display history in reverse chronological order
for entry in reversed(st.session_state.get("history", [])):
if entry: history_expander.write(f"- {entry}")
st.sidebar.markdown("---")
st.sidebar.info("App combines Image Layout PDF generation with AI Vision/SFT tools.")
st.sidebar.caption("Combined App by AI Assistant for User") |