Spaces:
Sleeping
Sleeping
# --- Combined Imports ------------------------------------ | |
import io | |
import os | |
import re | |
import base64 | |
import glob | |
import logging | |
import random | |
import shutil | |
import time | |
import zipfile | |
import json | |
import asyncio | |
import aiofiles | |
from datetime import datetime | |
from collections import Counter | |
from dataclasses import dataclass, field | |
from io import BytesIO | |
from typing import Optional, List, Dict, Any | |
import pandas as pd | |
import pytz | |
import streamlit as st | |
from PIL import Image, ImageDraw # Added ImageDraw | |
from reportlab.pdfgen import canvas | |
from reportlab.lib.utils import ImageReader | |
from reportlab.lib.pagesizes import letter # Default page size | |
import fitz # PyMuPDF | |
# --- Hugging Face Imports --- | |
from huggingface_hub import InferenceClient, HfApi, list_models | |
from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError # Import specific exceptions | |
# --- App Configuration ----------------------------------- | |
st.set_page_config( | |
page_title="Vision & Layout Titans (HF) ๐๐ผ๏ธ", | |
page_icon="๐ค", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
menu_items={ | |
'Get Help': 'https://huggingface.co/docs', | |
'Report a Bug': None, # Replace with your bug report link if desired | |
'About': "Combined App: Image->PDF Layout + Hugging Face Powered AI Tools ๐" | |
} | |
) | |
# Conditional imports for optional/heavy libraries | |
try: | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq, AutoModelForImageToWaveform, pipeline | |
# Add more AutoModel classes as needed for different tasks (Vision, OCR, etc.) | |
_transformers_available = True | |
except ImportError: | |
_transformers_available = False | |
st.sidebar.warning("AI/ML libraries (torch, transformers) not found. Local model features disabled.") | |
try: | |
from diffusers import StableDiffusionPipeline | |
_diffusers_available = True | |
except ImportError: | |
_diffusers_available = False | |
# Don't show warning if transformers also missing, handled above | |
if _transformers_available: | |
st.sidebar.warning("Diffusers library not found. Diffusion model features disabled.") | |
import requests # Keep requests import | |
# --- Logging Setup --------------------------------------- | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
logger = logging.getLogger(__name__) | |
log_records = [] | |
class LogCaptureHandler(logging.Handler): | |
def emit(self, record): | |
log_records.append(record) | |
logger.addHandler(LogCaptureHandler()) | |
# --- Environment Variables & Constants ------------------- | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
DEFAULT_PROVIDER = "hf-inference" | |
# Model List (curated, similar to Gradio example) - can be updated | |
FEATURED_MODELS_LIST = [ | |
"meta-llama/Meta-Llama-3.1-8B-Instruct", # Updated Llama model | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
"google/gemma-2-9b-it", # Added Gemma 2 | |
"Qwen/Qwen2-7B-Instruct", # Added Qwen2 | |
"microsoft/Phi-3-mini-4k-instruct", | |
"HuggingFaceH4/zephyr-7b-beta", | |
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", # Larger Mixture of Experts | |
# Add a smaller option | |
"HuggingFaceTB/SmolLM-1.7B-Instruct" | |
] | |
# Add common vision models if planning local loading | |
VISION_MODELS_LIST = [ | |
"Salesforce/blip-image-captioning-large", | |
"microsoft/trocr-large-handwritten", # OCR model | |
"llava-hf/llava-1.5-7b-hf", # Vision Language Model | |
"google/vit-base-patch16-224", # Basic Vision Transformer | |
] | |
DIFFUSION_MODELS_LIST = [ | |
"stabilityai/stable-diffusion-xl-base-1.0", # Common SDXL | |
"runwayml/stable-diffusion-v1-5", # Classic SD 1.5 | |
"OFA-Sys/small-stable-diffusion-v0", # Tiny diffusion | |
] | |
# --- Session State Initialization (Combined & Updated) --- | |
# Layout PDF specific | |
st.session_state.setdefault('layout_snapshots', []) | |
st.session_state.setdefault('layout_new_uploads', []) | |
# General App State | |
st.session_state.setdefault('history', []) | |
st.session_state.setdefault('processing', {}) | |
st.session_state.setdefault('asset_checkboxes', {}) | |
st.session_state.setdefault('downloaded_pdfs', {}) | |
st.session_state.setdefault('unique_counter', 0) | |
st.session_state.setdefault('cam0_file', None) | |
st.session_state.setdefault('cam1_file', None) | |
st.session_state.setdefault('characters', []) | |
st.session_state.setdefault('char_form_reset_key', 0) # For character form reset | |
st.session_state.setdefault('gallery_size', 10) | |
# --- Hugging Face & Local Model State --- | |
st.session_state.setdefault('hf_inference_client', None) # Store initialized client | |
st.session_state.setdefault('hf_provider', DEFAULT_PROVIDER) | |
st.session_state.setdefault('hf_custom_key', "") | |
st.session_state.setdefault('hf_selected_api_model', FEATURED_MODELS_LIST[0]) # Default API model | |
st.session_state.setdefault('hf_custom_api_model', "") # User override for API model | |
# Local Model Management | |
st.session_state.setdefault('local_models', {}) # Dict to store loaded models: {'path': {'model': obj, 'tokenizer': obj, 'type': 'causal/vision/etc'}} | |
st.session_state.setdefault('selected_local_model_path', None) # Path of the currently active local model | |
# Inference Parameters (shared for API and local where applicable) | |
st.session_state.setdefault('gen_max_tokens', 512) | |
st.session_state.setdefault('gen_temperature', 0.7) | |
st.session_state.setdefault('gen_top_p', 0.95) | |
st.session_state.setdefault('gen_frequency_penalty', 0.0) | |
st.session_state.setdefault('gen_seed', -1) # -1 for random | |
if 'asset_gallery_container' not in st.session_state: | |
st.session_state['asset_gallery_container'] = st.sidebar.empty() | |
# --- Dataclasses (Refined for Local Models) ------------- | |
class LocalModelConfig: | |
name: str # User-defined local name | |
hf_id: str # Hugging Face model ID used for download | |
model_type: str # 'causal', 'vision', 'diffusion', 'ocr', etc. | |
size_category: str = "unknown" # e.g., 'small', 'medium', 'large' | |
domain: Optional[str] = None | |
local_path: str = field(init=False) # Path where it's saved | |
def __post_init__(self): | |
# Define local path based on type and name | |
type_folder = f"{self.model_type}_models" | |
safe_name = re.sub(r'[^\w\-]+', '_', self.name) # Sanitize name for path | |
self.local_path = os.path.join(type_folder, safe_name) | |
def get_full_path(self): | |
return os.path.abspath(self.local_path) | |
# (Keep DiffusionConfig if still using diffusers library separately) | |
class DiffusionConfig: # Kept for clarity in diffusion tab if needed | |
name: str | |
base_model: str | |
size: str | |
domain: Optional[str] = None | |
def model_path(self): | |
return f"diffusion_models/{self.name}" | |
# --- Helper Functions (Combined and refined) ------------- | |
# (Keep generate_filename, pdf_url_to_filename, get_download_link, zip_directory) | |
# ... (previous helper functions like generate_filename, pdf_url_to_filename etc. are assumed here) ... | |
def generate_filename(sequence, ext="png"): | |
timestamp = time.strftime('%Y%m%d_%H%M%S') | |
safe_sequence = re.sub(r'[^\w\-]+', '_', str(sequence)) | |
return f"{safe_sequence}_{timestamp}.{ext}" | |
def pdf_url_to_filename(url): | |
name = re.sub(r'^https?://', '', url) | |
name = re.sub(r'[<>:"/\\|?*]', '_', name) | |
return name[:100] + ".pdf" # Limit length | |
def get_download_link(file_path, mime_type="application/octet-stream", label="Download"): | |
if not os.path.exists(file_path): return f"{label} (File not found)" | |
try: | |
with open(file_path, "rb") as f: file_bytes = f.read() | |
b64 = base64.b64encode(file_bytes).decode() | |
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>' | |
except Exception as e: | |
logger.error(f"Error creating download link for {file_path}: {e}") | |
return f"{label} (Error)" | |
def zip_directory(directory_path, zip_path): | |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
for root, _, files in os.walk(directory_path): | |
for file in files: | |
file_path = os.path.join(root, file) | |
zipf.write(file_path, os.path.relpath(file_path, os.path.dirname(directory_path))) | |
def get_local_model_paths(model_type="causal"): | |
"""Gets paths of locally saved models of a specific type.""" | |
pattern = f"{model_type}_models/*" | |
dirs = [d for d in glob.glob(pattern) if os.path.isdir(d)] | |
return dirs | |
def get_gallery_files(file_types=("png", "pdf", "jpg", "jpeg", "md", "txt")): | |
all_files = set() | |
for ext in file_types: | |
all_files.update(glob.glob(f"*.{ext.lower()}")) | |
all_files.update(glob.glob(f"*.{ext.upper()}")) | |
return sorted(list(all_files)) | |
def get_pdf_files(): | |
return sorted(glob.glob("*.pdf") + glob.glob("*.PDF")) | |
def download_pdf(url, output_path): | |
try: | |
headers = {'User-Agent': 'Mozilla/5.0'} | |
response = requests.get(url, stream=True, timeout=20, headers=headers) | |
response.raise_for_status() | |
with open(output_path, "wb") as f: | |
for chunk in response.iter_content(chunk_size=8192): f.write(chunk) | |
logger.info(f"Successfully downloaded {url} to {output_path}") | |
return True | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Failed to download {url}: {e}") | |
if os.path.exists(output_path): | |
try: | |
os.remove(output_path) | |
except: | |
pass | |
return False | |
except Exception as e: | |
logger.error(f"An unexpected error occurred during download of {url}: {e}") | |
if os.path.exists(output_path): | |
try: | |
os.remove(output_path) | |
except: | |
pass | |
return False | |
# (Keep process_pdf_snapshot - it doesn't use AI) | |
async def process_pdf_snapshot(pdf_path, mode="single", resolution_factor=2.0): | |
start_time = time.time() | |
status_placeholder = st.empty() | |
status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... (0s)") | |
output_files = [] | |
try: | |
doc = fitz.open(pdf_path) | |
matrix = fitz.Matrix(resolution_factor, resolution_factor) | |
num_pages_to_process = 0 | |
if mode == "single": num_pages_to_process = min(1, len(doc)) | |
elif mode == "twopage": num_pages_to_process = min(2, len(doc)) | |
elif mode == "allpages": num_pages_to_process = len(doc) | |
for i in range(num_pages_to_process): | |
page_start_time = time.time() | |
page = doc[i] | |
pix = page.get_pixmap(matrix=matrix) | |
base_name = os.path.splitext(os.path.basename(pdf_path))[0] | |
output_file = generate_filename(f"{base_name}_pg{i+1}_{mode}", "png") | |
await asyncio.to_thread(pix.save, output_file) | |
output_files.append(output_file) | |
elapsed_page = int(time.time() - page_start_time) | |
status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... Page {i+1}/{num_pages_to_process} done ({elapsed_page}s)") | |
await asyncio.sleep(0.01) | |
doc.close() | |
elapsed = int(time.time() - start_time) | |
status_placeholder.success(f"PDF Snapshot ({mode}, {len(output_files)} files) completed in {elapsed}s!") | |
return output_files | |
except Exception as e: | |
logger.error(f"Failed to process PDF snapshot for {pdf_path}: {e}") | |
status_placeholder.error(f"Failed to process PDF {os.path.basename(pdf_path)}: {e}") | |
for f in output_files: | |
if os.path.exists(f): os.remove(f) | |
return [] | |
# --- HF Inference Client Management --- | |
def get_hf_client() -> Optional[InferenceClient]: | |
"""Gets or initializes the Hugging Face Inference Client based on session state.""" | |
provider = st.session_state.hf_provider | |
custom_key = st.session_state.hf_custom_key.strip() | |
token_to_use = custom_key if custom_key else HF_TOKEN | |
if not token_to_use and provider != "hf-inference": | |
st.error(f"Provider '{provider}' requires a Hugging Face API token (either via HF_TOKEN env var or custom key).") | |
return None | |
if provider == "hf-inference" and not token_to_use: | |
logger.warning("Using hf-inference provider without a token. Rate limits may apply.") | |
token_to_use = None # Explicitly set to None for public inference API | |
# Check if client needs re-initialization | |
current_client = st.session_state.get('hf_inference_client') | |
# Simple check: re-init if provider or token presence changes | |
needs_reinit = True | |
if current_client: | |
# Basic check, more robust checks could compare client._token etc. if needed | |
# This assumes provider and token status are the key determinants | |
client_uses_custom = hasattr(current_client, '_token') and current_client._token == custom_key | |
client_uses_default = hasattr(current_client, '_token') and current_client._token == HF_TOKEN | |
client_uses_no_token = not hasattr(current_client, '_token') or current_client._token is None | |
if current_client.provider == provider: | |
if custom_key and client_uses_custom: needs_reinit = False | |
elif not custom_key and HF_TOKEN and client_uses_default: needs_reinit = False | |
elif not custom_key and not HF_TOKEN and client_uses_no_token: needs_reinit = False | |
if needs_reinit: | |
try: | |
logger.info(f"Initializing InferenceClient for provider: {provider}. Token source: {'Custom Key' if custom_key else ('HF_TOKEN' if HF_TOKEN else 'None')}") | |
st.session_state.hf_inference_client = InferenceClient(token=token_to_use, provider=provider) | |
logger.info("InferenceClient initialized successfully.") | |
except Exception as e: | |
st.error(f"Failed to initialize Hugging Face client for provider {provider}: {e}") | |
logger.error(f"InferenceClient initialization failed: {e}") | |
st.session_state.hf_inference_client = None | |
return st.session_state.hf_inference_client | |
# --- HF/Local Model Processing Functions (Replaced OpenAI ones) --- | |
def process_text_hf(text: str, prompt: str, use_api: bool) -> str: | |
"""Processes text using either HF Inference API or a loaded local model.""" | |
status_placeholder = st.empty() | |
start_time = time.time() | |
result_text = "" | |
# --- Prepare Parameters --- | |
params = { | |
"max_new_tokens": st.session_state.gen_max_tokens, # Note: HF uses max_new_tokens typically | |
"temperature": st.session_state.gen_temperature, | |
"top_p": st.session_state.gen_top_p, | |
"repetition_penalty": st.session_state.gen_frequency_penalty + 1.0, # Adjust HF param name if needed | |
} | |
seed = st.session_state.gen_seed | |
if seed != -1: params["seed"] = seed | |
# --- Prepare Messages --- | |
# Simple system prompt + user prompt structure | |
# More complex chat history could be added here if needed | |
system_prompt = "You are a helpful assistant. Process the following text based on the user's request." # Default, consider making configurable | |
full_prompt = f"{prompt}\n\n---\n\n{text}" | |
# Basic message format for many models, adjust if needed per model type | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": full_prompt} | |
] | |
if use_api: | |
# --- Use Hugging Face Inference API --- | |
status_placeholder.info("Processing text using Hugging Face API...") | |
client = get_hf_client() | |
if not client: | |
return "Error: Hugging Face client not available or configured correctly." | |
model_id = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model | |
if not model_id: | |
return "Error: No Hugging Face API model selected or specified." | |
status_placeholder.info(f"Using API Model: {model_id}") | |
try: | |
# Non-streaming for simplicity in Streamlit integration first | |
response = client.chat_completion( | |
model=model_id, | |
messages=messages, | |
max_tokens=params['max_new_tokens'], # chat_completion uses max_tokens | |
temperature=params['temperature'], | |
top_p=params['top_p'], | |
# Add other params if supported by client.chat_completion | |
) | |
result_text = response.choices[0].message.content or "" | |
logger.info(f"HF API text processing successful for model {model_id}.") | |
except Exception as e: | |
logger.error(f"HF API text processing failed for model {model_id}: {e}") | |
result_text = f"Error during Hugging Face API inference: {str(e)}" | |
else: | |
# --- Use Loaded Local Model --- | |
status_placeholder.info("Processing text using local model...") | |
if not _transformers_available: | |
return "Error: Transformers library not available for local models." | |
model_path = st.session_state.get('selected_local_model_path') | |
if not model_path or model_path not in st.session_state.get('local_models', {}): | |
return "Error: No suitable local model selected or loaded." | |
local_model_data = st.session_state['local_models'][model_path] | |
if local_model_data.get('type') != 'causal': | |
return f"Error: Loaded model '{os.path.basename(model_path)}' is not a Causal LM." | |
status_placeholder.info(f"Using Local Model: {os.path.basename(model_path)}") | |
model = local_model_data.get('model') | |
tokenizer = local_model_data.get('tokenizer') | |
if not model or not tokenizer: | |
return f"Error: Model or tokenizer not found for {os.path.basename(model_path)}." | |
try: | |
# Prepare input for local transformers model | |
# Handle chat template if available, otherwise basic concatenation | |
try: | |
prompt_for_model = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
except Exception: # Fallback if template fails or doesn't exist | |
logger.warning(f"Could not apply chat template for {model_path}. Using basic formatting.") | |
prompt_for_model = f"System: {system_prompt}\nUser: {full_prompt}\nAssistant:" | |
inputs = tokenizer(prompt_for_model, return_tensors="pt", padding=True, truncation=True, max_length=params['max_new_tokens'] * 2) # Heuristic length limit | |
# Move inputs to the same device as the model | |
inputs = {k: v.to(model.device) for k, v in inputs.items()} | |
# Generate | |
# Ensure generate parameters match transformers' expected names | |
generate_params = { | |
"max_new_tokens": params['max_new_tokens'], | |
"temperature": params['temperature'], | |
"top_p": params['top_p'], | |
"repetition_penalty": params.get('repetition_penalty', 1.0), # Use adjusted name | |
"do_sample": True if params['temperature'] > 0.1 else False, # Required for temp/top_p | |
"pad_token_id": tokenizer.eos_token_id # Avoid PAD warning | |
} | |
if 'seed' in params: pass # Seed handling can be complex with transformers, often set globally | |
with torch.no_grad(): # Disable gradient calculation for inference | |
outputs = model.generate(**inputs, **generate_params) | |
# Decode the output, skipping special tokens and the prompt | |
# output_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# More robust decoding: only decode the newly generated part | |
input_length = inputs['input_ids'].shape[1] | |
generated_ids = outputs[0][input_length:] | |
result_text = tokenizer.decode(generated_ids, skip_special_tokens=True) | |
logger.info(f"Local text processing successful for model {model_path}.") | |
except Exception as e: | |
logger.error(f"Local text processing failed for model {model_path}: {e}") | |
result_text = f"Error during local model inference: {str(e)}" | |
elapsed = int(time.time() - start_time) | |
status_placeholder.success(f"Text processing completed in {elapsed}s.") | |
return result_text | |
# --- Image Processing (Placeholder/Basic Implementation) --- | |
# This needs significant work depending on the chosen vision model type | |
def process_image_hf(image: Image.Image, prompt: str, use_api: bool) -> str: | |
"""Processes an image using either HF Inference API or a local model.""" | |
status_placeholder = st.empty() | |
start_time = time.time() | |
result_text = "[Image processing not fully implemented with HF models yet]" | |
if use_api: | |
# --- Use HF API (Basic Image-to-Text Example) --- | |
status_placeholder.info("Processing image using Hugging Face API (Image-to-Text)...") | |
client = get_hf_client() | |
if not client: return "Error: HF client not configured." | |
# Convert PIL image to bytes | |
buffered = BytesIO() | |
image.save(buffered, format="PNG" if image.format != 'JPEG' else 'JPEG') | |
img_bytes = buffered.getvalue() | |
try: | |
# Example using a generic image-to-text model via API | |
# NOTE: This does NOT use the 'prompt' effectively like VQA models. | |
# Need to select an appropriate model ID known for image captioning. | |
# Using a default BLIP model for demonstration. | |
captioning_model_id = "Salesforce/blip-image-captioning-large" | |
status_placeholder.info(f"Using API Image-to-Text Model: {captioning_model_id}") | |
response_list = client.image_to_text(data=img_bytes, model=captioning_model_id) | |
if response_list and isinstance(response_list, list) and 'generated_text' in response_list[0]: | |
result_text = f"API Caption ({captioning_model_id}): {response_list[0]['generated_text']}\n\n(Note: API call did not use custom prompt: '{prompt}')" | |
logger.info(f"HF API image captioning successful for model {captioning_model_id}.") | |
else: | |
result_text = "Error: Unexpected response format from image-to-text API." | |
logger.warning(f"Unexpected API response for image-to-text: {response_list}") | |
except Exception as e: | |
logger.error(f"HF API image processing failed: {e}") | |
result_text = f"Error during Hugging Face API image inference: {str(e)}" | |
else: | |
# --- Use Local Vision Model --- | |
status_placeholder.info("Processing image using local model...") | |
if not _transformers_available: return "Error: Transformers library needed." | |
model_path = st.session_state.get('selected_local_model_path') | |
if not model_path or model_path not in st.session_state.get('local_models', {}): | |
return "Error: No suitable local model selected or loaded." | |
local_model_data = st.session_state['local_models'][model_path] | |
model_type = local_model_data.get('type') | |
# --- Placeholder Logic - Requires Specific Model Implementation --- | |
if model_type == 'vision': # General VQA or Captioning | |
status_placeholder.warning(f"Local Vision Model ({os.path.basename(model_path)}): Processing logic depends heavily on the specific model architecture (e.g., LLaVA, BLIP). Placeholder implementation.") | |
# Example: Needs processor + model.generate based on model type | |
# processor = local_model_data.get('processor') | |
# model = local_model_data.get('model') | |
# if processor and model: | |
# try: | |
# # inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device) | |
# # generated_ids = model.generate(**inputs, max_new_tokens=...) | |
# # result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
# result_text = f"[Local vision processing for {os.path.basename(model_path)} needs specific implementation based on its type.] Prompt was: {prompt}" | |
# except Exception as e: | |
# result_text = f"Error during local vision model inference: {e}" | |
# else: | |
# result_text = "Error: Processor or model missing for local vision task." | |
result_text = f"[Local vision processing for {os.path.basename(model_path)} needs specific implementation based on its type.] Prompt was: {prompt}" # Placeholder | |
elif model_type == 'ocr': # OCR Specific Model | |
status_placeholder.warning(f"Local OCR Model ({os.path.basename(model_path)}): Placeholder implementation.") | |
# Example for TrOCR style models | |
# processor = local_model_data.get('processor') | |
# model = local_model_data.get('model') | |
# if processor and model: | |
# try: | |
# # pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(model.device) | |
# # generated_ids = model.generate(pixel_values, max_new_tokens=...) | |
# # result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
# result_text = f"[Local OCR processing for {os.path.basename(model_path)} needs specific implementation.]" | |
# except Exception as e: | |
# result_text = f"Error during local OCR model inference: {e}" | |
# else: | |
# result_text = "Error: Processor or model missing for local OCR task." | |
result_text = f"[Local OCR processing for {os.path.basename(model_path)} needs specific implementation.]" # Placeholder | |
else: | |
result_text = f"Error: Loaded model '{os.path.basename(model_path)}' is not a recognized vision/OCR type for this function." | |
elapsed = int(time.time() - start_time) | |
status_placeholder.success(f"Image processing attempt completed in {elapsed}s.") | |
return result_text | |
# Basic OCR function using the image processor above | |
async def process_hf_ocr(image: Image.Image, output_file: str, use_api: bool) -> str: | |
""" Performs OCR using the process_image_hf function framework. """ | |
# Simple prompt for OCR task | |
ocr_prompt = "Extract text content from this image." | |
result = process_image_hf(image, ocr_prompt, use_api) | |
# Save the result if it looks like text (basic check) | |
if result and not result.startswith("Error") and not result.startswith("["): | |
try: | |
async with aiofiles.open(output_file, "w", encoding='utf-8') as f: | |
await f.write(result) | |
logger.info(f"HF OCR result saved to {output_file}") | |
except IOError as e: | |
logger.error(f"Failed to save HF OCR output to {output_file}: {e}") | |
result += f"\n[Error saving file: {e}]" # Append error to result if save fails | |
elif os.path.exists(output_file): | |
# Remove file if processing failed or was just a placeholder message | |
try: os.remove(output_file) | |
except OSError: pass | |
return result | |
# --- Character Functions (Keep from previous) ----------- | |
# ... (randomize_character_content, save_character, load_characters are assumed here) ... | |
def randomize_character_content(): | |
intro_templates = [ | |
"{char} is a valiant knight...", "{char} is a mischievous thief...", | |
"{char} is a wise scholar...", "{char} is a fiery warrior...", "{char} is a gentle healer..." | |
] | |
greeting_templates = [ | |
"'I am from the knight's guild...'", "'I heard you needed helpโnameโs {char}...", | |
"'Oh, hello! Iโm {char}, didnโt see you there...'", "'Iโm {char}, and Iโm here to fight...'", | |
"'Iโm {char}, here to heal...'" ] | |
name = f"Character_{random.randint(1000, 9999)}" | |
gender = random.choice(["Male", "Female"]) | |
intro = random.choice(intro_templates).format(char=name) | |
greeting = random.choice(greeting_templates).format(char=name) | |
return name, gender, intro, greeting | |
def save_character(character_data): | |
characters = st.session_state.get('characters', []) | |
if any(c['name'] == character_data['name'] for c in characters): | |
st.error(f"Character name '{character_data['name']}' already exists.") | |
return False | |
characters.append(character_data) | |
st.session_state['characters'] = characters | |
try: | |
with open("characters.json", "w", encoding='utf-8') as f: json.dump(characters, f, indent=2) | |
logger.info(f"Saved character: {character_data['name']}") | |
return True | |
except IOError as e: | |
logger.error(f"Failed to save characters.json: {e}") | |
st.error(f"Failed to save character file: {e}") | |
return False | |
def load_characters(): | |
if not os.path.exists("characters.json"): st.session_state['characters'] = []; return | |
try: | |
with open("characters.json", "r", encoding='utf-8') as f: characters = json.load(f) | |
if isinstance(characters, list): st.session_state['characters'] = characters; logger.info(f"Loaded {len(characters)} characters.") | |
else: st.session_state['characters'] = []; logger.warning("characters.json is not a list, resetting."); os.remove("characters.json") | |
except (json.JSONDecodeError, IOError) as e: | |
logger.error(f"Failed to load or decode characters.json: {e}") | |
st.error(f"Error loading character file: {e}. Starting fresh.") | |
st.session_state['characters'] = [] | |
try: | |
corrupt_filename = f"characters_corrupt_{int(time.time())}.json" | |
shutil.copy("characters.json", corrupt_filename); logger.info(f"Backed up corrupted character file to {corrupt_filename}"); os.remove("characters.json") | |
except Exception as backup_e: logger.error(f"Could not backup corrupted character file: {backup_e}") | |
# --- Utility: Clean stems (Keep from previous) ---------- | |
def clean_stem(fn: str) -> str: | |
name = os.path.splitext(os.path.basename(fn))[0] | |
name = name.replace('-', ' ').replace('_', ' ') | |
return name.strip().title() | |
# --- PDF Creation: Image Sized + Captions (Keep from previous) --- | |
def make_image_sized_pdf(sources): | |
if not sources: st.warning("No image sources provided for PDF generation."); return None | |
buf = io.BytesIO() | |
c = canvas.Canvas(buf, pagesize=letter) # Default letter | |
try: | |
for idx, src in enumerate(sources, start=1): | |
status_placeholder = st.empty() | |
status_placeholder.info(f"Adding page {idx}/{len(sources)}: {os.path.basename(str(src))}...") | |
try: | |
filename = f'page_{idx}' | |
if isinstance(src, str): | |
if not os.path.exists(src): logger.warning(f"Image file not found: {src}. Skipping."); status_placeholder.warning(f"Skipping missing file: {os.path.basename(src)}"); continue | |
img_obj = Image.open(src); filename = os.path.basename(src) | |
else: | |
src.seek(0); img_obj = Image.open(src); filename = getattr(src, 'name', f'uploaded_image_{idx}'); src.seek(0) | |
with img_obj: | |
iw, ih = img_obj.size | |
if iw <= 0 or ih <= 0: logger.warning(f"Invalid image dimensions ({iw}x{ih}) for {filename}. Skipping."); status_placeholder.warning(f"Skipping invalid image: {filename}"); continue | |
cap_h = 30; pw, ph = iw, ih + cap_h | |
c.setPageSize((pw, ph)) | |
img_reader = ImageReader(img_obj) | |
c.drawImage(img_reader, 0, cap_h, width=iw, height=ih, preserveAspectRatio=True, anchor='c', mask='auto') | |
caption = clean_stem(filename); c.setFont('Helvetica', 12); c.setFillColorRGB(0, 0, 0); c.drawCentredString(pw / 2, cap_h / 2 + 3, caption) | |
c.setFont('Helvetica', 8); c.setFillColorRGB(0.5, 0.5, 0.5); c.drawRightString(pw - 10, 8, f"Page {idx}") | |
c.showPage() | |
status_placeholder.success(f"Added page {idx}/{len(sources)}: {filename}") | |
except (IOError, OSError, UnidentifiedImageError) as img_err: logger.error(f"Error processing image {src}: {img_err}"); status_placeholder.error(f"Error adding page {idx}: {img_err}") | |
except Exception as e: logger.error(f"Unexpected error adding page {idx} ({src}): {e}"); status_placeholder.error(f"Unexpected error on page {idx}: {e}") | |
c.save(); buf.seek(0) | |
if buf.getbuffer().nbytes < 100: st.error("PDF generation resulted in an empty file."); return None | |
return buf.getvalue() | |
except Exception as e: | |
logger.error(f"Fatal error during PDF generation: {e}") | |
st.error(f"PDF Generation Failed: {e}") | |
return None | |
# --- Sidebar Gallery Update Function (MODIFIED) -------- | |
def update_gallery(): | |
st.sidebar.markdown("### Asset Gallery ๐ธ๐") | |
all_files = get_gallery_files() # Get currently available files | |
if not all_files: | |
st.sidebar.info("No assets (images, PDFs, text files) found yet.") | |
return | |
st.sidebar.caption(f"Found {len(all_files)} assets:") | |
for idx, file in enumerate(all_files): | |
st.session_state['unique_counter'] += 1 | |
unique_id = st.session_state['unique_counter'] | |
item_key_base = f"gallery_item_{os.path.basename(file)}_{unique_id}" | |
basename = os.path.basename(file) | |
st.sidebar.markdown(f"**{basename}**") # Display filename clearly | |
try: | |
file_ext = os.path.splitext(file)[1].lower() | |
# Display previews | |
if file_ext in ['.png', '.jpg', '.jpeg']: | |
# Add expander for large galleries | |
with st.sidebar.expander("Preview", expanded=False): | |
st.image(Image.open(file), use_container_width=True) | |
elif file_ext == '.pdf': | |
with st.sidebar.expander("Preview (Page 1)", expanded=False): | |
doc = fitz.open(file) | |
if len(doc) > 0: | |
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Smaller preview | |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
st.image(img, use_container_width=True) | |
else: | |
st.warning("Empty PDF") | |
doc.close() | |
elif file_ext in ['.md', '.txt']: | |
with st.sidebar.expander("Preview (Start)", expanded=False): | |
with open(file, 'r', encoding='utf-8', errors='ignore') as f: | |
content_preview = f.read(200) # Show first 200 chars | |
st.code(content_preview + "...", language='markdown' if file_ext == '.md' else 'text') | |
# --- Actions for the file (Select, Download, Delete) --- | |
action_cols = st.sidebar.columns(3) # Use columns for buttons | |
with action_cols[0]: | |
checkbox_key = f"cb_{item_key_base}" | |
st.session_state['asset_checkboxes'][file] = st.checkbox( | |
"Select", | |
value=st.session_state['asset_checkboxes'].get(file, False), | |
key=checkbox_key | |
) | |
with action_cols[1]: | |
mime_map = {'.png': 'image/png', '.jpg': 'image/jpeg', '.jpeg': 'image/jpeg', '.pdf': 'application/pdf', '.txt': 'text/plain', '.md': 'text/markdown'} | |
mime_type = mime_map.get(file_ext, "application/octet-stream") | |
# Use button for download to avoid complex HTML link generation issues sometimes | |
dl_key = f"dl_{item_key_base}" | |
try: | |
with open(file, "rb") as fp: | |
st.download_button( | |
label="๐ฅ", | |
data=fp, | |
file_name=basename, | |
mime=mime_type, | |
key=dl_key, | |
help="Download this file" | |
) | |
except Exception as dl_e: | |
st.error(f"DL Err: {dl_e}") | |
with action_cols[2]: | |
delete_key = f"del_{item_key_base}" | |
if st.button("๐๏ธ", key=delete_key, help=f"Delete {basename}"): | |
try: | |
os.remove(file) | |
st.session_state['asset_checkboxes'].pop(file, None) # Remove from selection state | |
# Remove from layout_snapshots if present | |
if file in st.session_state.get('layout_snapshots', []): | |
st.session_state['layout_snapshots'].remove(file) | |
logger.info(f"Deleted asset: {file}") | |
st.toast(f"Deleted {basename}!", icon="โ ") # Use toast for less intrusive feedback | |
# REMOVED st.rerun() - Rely on file watcher | |
except OSError as e: | |
logger.error(f"Error deleting file {file}: {e}") | |
st.error(f"Could not delete {basename}") | |
# Trigger a rerun MANUALLY after deletion completes if file watcher is unreliable | |
st.rerun() | |
except (fitz.fitz.FileNotFoundError, FileNotFoundError): | |
st.sidebar.error(f"File not found: {basename}") | |
st.session_state['asset_checkboxes'].pop(file, None) # Clean up state | |
except (fitz.fitz.FileDataError, fitz.fitz.RuntimeException) as pdf_err: | |
st.sidebar.error(f"Corrupt PDF: {basename}") | |
logger.warning(f"Error opening PDF {file}: {pdf_err}") | |
except UnidentifiedImageError: | |
st.sidebar.error(f"Invalid Image: {basename}") | |
logger.warning(f"Cannot identify image file {file}") | |
except Exception as e: | |
st.sidebar.error(f"Error: {basename}") | |
logger.error(f"Error displaying asset {file}: {e}") | |
st.sidebar.markdown("---") # Separator between items | |
# --- UI Elements ----------------------------------------- | |
# --- Sidebar: HF Inference Settings --- | |
st.sidebar.subheader("๐ค Hugging Face Settings") | |
st.sidebar.markdown("Configure API inference or select local models.") | |
# API Settings Expander | |
with st.sidebar.expander("API Inference Settings", expanded=False): | |
st.session_state.hf_custom_key = st.text_input( | |
"Custom HF Token (BYOK)", | |
value=st.session_state.get('hf_custom_key', ""), | |
type="password", | |
key="hf_custom_key_input", | |
help="Enter your Hugging Face API token. Overrides HF_TOKEN env var." | |
) | |
token_status = "Custom Key Set" if st.session_state.hf_custom_key else ("Default HF_TOKEN Set" if HF_TOKEN else "No Token Set") | |
st.caption(f"Token Status: {token_status}") | |
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"] | |
st.session_state.hf_provider = st.selectbox( | |
"Inference Provider", | |
options=providers_list, | |
index=providers_list.index(st.session_state.get('hf_provider', DEFAULT_PROVIDER)), | |
key="hf_provider_select", | |
help="Select the backend provider. Some require specific API keys." | |
) | |
# Validate provider based on key (simple validation) | |
if not st.session_state.hf_custom_key and not HF_TOKEN and st.session_state.hf_provider != "hf-inference": | |
st.warning(f"Provider '{st.session_state.hf_provider}' may require a token. Using 'hf-inference' may work without a token but with rate limits.") | |
# API Model Selection | |
st.session_state.hf_custom_api_model = st.text_input( | |
"Custom API Model ID", | |
value=st.session_state.get('hf_custom_api_model', ""), | |
key="hf_custom_model_input", | |
placeholder="e.g., google/gemma-2-9b-it", | |
help="Overrides the featured model selection below if provided." | |
) | |
# Use custom if provided, otherwise use the selected featured model | |
effective_api_model = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model | |
st.session_state.hf_selected_api_model = st.selectbox( | |
"Featured API Model", | |
options=FEATURED_MODELS_LIST, | |
index=FEATURED_MODELS_LIST.index(st.session_state.get('hf_selected_api_model', FEATURED_MODELS_LIST[0])), | |
key="hf_featured_model_select", | |
help="Select a common model. Ignored if Custom API Model ID is set." | |
) | |
st.caption(f"Effective API Model: {effective_api_model}") | |
# Local Model Selection Expander | |
with st.sidebar.expander("Local Model Selection", expanded=True): | |
if not _transformers_available: | |
st.warning("Transformers library not found. Cannot load or use local models.") | |
else: | |
local_model_options = ["None"] + list(st.session_state.get('local_models', {}).keys()) | |
current_selection = st.session_state.get('selected_local_model_path') | |
# Ensure current selection is valid | |
if current_selection not in local_model_options: | |
current_selection = "None" | |
selected_path = st.selectbox( | |
"Active Local Model", | |
options=local_model_options, | |
index=local_model_options.index(current_selection), | |
format_func=lambda x: os.path.basename(x) if x != "None" else "None", | |
key="local_model_selector", | |
help="Select a model loaded via the 'Build Titan' tab to use for processing." | |
) | |
st.session_state.selected_local_model_path = selected_path if selected_path != "None" else None | |
if st.session_state.selected_local_model_path: | |
model_info = st.session_state.local_models[st.session_state.selected_local_model_path] | |
st.caption(f"Type: {model_info.get('type', 'Unknown')}") | |
st.caption(f"Device: {model_info.get('model').device if model_info.get('model') else 'N/A'}") | |
else: | |
st.caption("No local model selected.") | |
# Generation Parameters Expander | |
with st.sidebar.expander("Generation Parameters", expanded=False): | |
st.session_state.gen_max_tokens = st.slider("Max New Tokens", 1, 4096, st.session_state.get('gen_max_tokens', 512), step=1, key="param_max_tokens") | |
st.session_state.gen_temperature = st.slider("Temperature", 0.01, 2.0, st.session_state.get('gen_temperature', 0.7), step=0.01, key="param_temp") | |
st.session_state.gen_top_p = st.slider("Top-P", 0.01, 1.0, st.session_state.get('gen_top_p', 0.95), step=0.01, key="param_top_p") | |
# Note: HF often uses repetition_penalty instead of frequency_penalty. We'll use it here. | |
st.session_state.gen_frequency_penalty = st.slider("Repetition Penalty", 1.0, 2.0, st.session_state.get('gen_frequency_penalty', 0.0)+1.0, step=0.05, key="param_repetition", help="1.0 means no penalty.") | |
st.session_state.gen_seed = st.slider("Seed", -1, 65535, st.session_state.get('gen_seed', -1), step=1, key="param_seed", help="-1 for random.") | |
st.sidebar.markdown("---") # Separator before gallery settings | |
# --- ADDED: Gallery Settings Section --- | |
st.sidebar.subheader("๐ผ๏ธ Gallery Settings") | |
st.slider( | |
"Max Items Shown", | |
min_value=2, | |
max_value=50, # Adjust max if needed | |
value=st.session_state.get('gallery_size', 10), | |
key="gallery_size_slider", # Keep the key, define it ONCE here | |
help="Controls the maximum number of assets displayed in the sidebar gallery." | |
) | |
st.session_state.gallery_size = st.session_state.gallery_size_slider # Ensure sync | |
st.sidebar.markdown("---") # Separator after gallery settings | |
# --- App Title ------------------------------------------- | |
st.title("Vision & Layout Titans (HF) ๐๐ผ๏ธ๐") | |
st.markdown("Combined App: Image-to-PDF Layout + Hugging Face Powered AI Tools") | |
# --- Main Application Tabs ------------------------------- | |
tab_list = [ | |
"Image->PDF Layout ๐ผ๏ธโก๏ธ๐", # From App 1 | |
"Camera Snap ๐ท", | |
"Download PDFs ๐ฅ", | |
"Build Titan (Local Models) ๐ฑ", # Renamed for clarity | |
"Text Process (HF) ๐", # New tab for text | |
"Image Process (HF) ๐ผ๏ธ", # New tab for image | |
"Test OCR (HF) ๐", # Renamed | |
"Character Editor ๐งโ๐จ", | |
"Character Gallery ๐ผ๏ธ", | |
# Original Tabs (potentially redundant or integrated now): | |
# "PDF Process ๐", (Integrated into Text/Image process conceptually) | |
# "MD Gallery & Process ๐", (Use Text Process tab) | |
# "Test Image Gen ๐จ", (Separate Diffusion logic) | |
] | |
# Filter out redundant tabs if they are fully replaced | |
# Example: If MD Gallery is fully handled by Text Process, remove it. For now, keep most. | |
# Let's keep PDF Process and Image Process separate for clarity of input type, but use the new HF functions | |
tabs_to_create = [ | |
"Image->PDF Layout ๐ผ๏ธโก๏ธ๐", | |
"Camera Snap ๐ท", | |
"Download PDFs ๐ฅ", | |
"Build Titan (Local Models) ๐ฑ", | |
"PDF Process (HF) ๐", # Use HF functions for PDF pages | |
"Image Process (HF) ๐ผ๏ธ",# Use HF functions for images | |
"Text Process (HF) ๐", # Use HF functions for MD/TXT files | |
"Test OCR (HF) ๐", # Use HF OCR logic | |
"Test Image Gen (Diffusers) ๐จ", # Keep diffusion separate | |
"Character Editor ๐งโ๐จ", | |
"Character Gallery ๐ผ๏ธ", | |
] | |
tabs = st.tabs(tabs_to_create) | |
# --- Tab Implementations --- | |
# --- Tab 1: Image -> PDF Layout (Keep from previous merge) --- | |
with tabs[0]: | |
# ... (Code from previous merge for this tab remains largely the same) ... | |
st.header("Image to PDF Layout Generator") | |
st.markdown("Upload or scan images, reorder them, and generate a PDF where each page matches the image dimensions and includes a simple caption.") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("A. Scan or Upload Images") | |
layout_cam = st.camera_input("๐ธ Scan Document for Layout PDF", key="layout_cam") | |
if layout_cam: | |
now = datetime.now(pytz.timezone("US/Central")) | |
scan_name = generate_filename(f"layout_scan_{now.strftime('%a').upper()}", "png") | |
try: | |
with open(scan_name, "wb") as f: f.write(layout_cam.getvalue()) | |
st.image(Image.open(scan_name), caption=f"Scanned: {scan_name}", use_container_width=True) | |
if scan_name not in st.session_state['layout_snapshots']: st.session_state['layout_snapshots'].append(scan_name) | |
st.success(f"Scan saved as {scan_name}") | |
update_gallery(); # Add to gallery | |
except Exception as e: st.error(f"Failed to save scan: {e}"); logger.error(f"Failed to save camera scan {scan_name}: {e}") | |
layout_uploads = st.file_uploader("๐ Upload PNG/JPG Images for Layout PDF", type=["png","jpg","jpeg"], accept_multiple_files=True, key="layout_uploader") | |
if layout_uploads: st.session_state['layout_new_uploads'] = layout_uploads # Store for processing below | |
with col2: | |
st.subheader("B. Review and Reorder") | |
layout_records = [] | |
processed_snapshots = set() | |
# Process snapshots | |
for idx, path in enumerate(st.session_state.get('layout_snapshots', [])): | |
if path not in processed_snapshots and os.path.exists(path): | |
try: | |
with Image.open(path) as im: w, h = im.size; ar = round(w / h, 2) if h > 0 else 0; orient = "Square" if 0.9 <= ar <= 1.1 else ("Landscape" if ar > 1.1 else "Portrait") | |
layout_records.append({"filename": os.path.basename(path), "source": path, "width": w, "height": h, "aspect_ratio": ar, "orientation": orient, "order": idx, "type": "Scan"}) | |
processed_snapshots.add(path) | |
except Exception as e: logger.warning(f"Could not process snapshot {path}: {e}"); st.warning(f"Skipping invalid snapshot: {os.path.basename(path)}") | |
# Process current uploads | |
current_uploads = st.session_state.get('layout_new_uploads', []) | |
if current_uploads: | |
start_idx = len(layout_records) | |
for jdx, f_obj in enumerate(current_uploads, start=start_idx): | |
try: | |
f_obj.seek(0) | |
with Image.open(f_obj) as im: w, h = im.size; ar = round(w / h, 2) if h > 0 else 0; orient = "Square" if 0.9 <= ar <= 1.1 else ("Landscape" if ar > 1.1 else "Portrait") | |
layout_records.append({"filename": f_obj.name, "source": f_obj, "width": w, "height": h, "aspect_ratio": ar, "orientation": orient, "order": jdx, "type": "Upload"}) | |
f_obj.seek(0) | |
except Exception as e: logger.warning(f"Could not process uploaded file {f_obj.name}: {e}"); st.warning(f"Skipping invalid upload: {f_obj.name}") | |
if not layout_records: st.info("Scan or upload images using the controls on the left.") | |
else: | |
layout_df = pd.DataFrame(layout_records); dims = st.multiselect("Include orientations:", options=["Landscape","Portrait","Square"], default=["Landscape","Portrait","Square"], key="layout_dims_filter") | |
filtered_df = layout_df[layout_df['orientation'].isin(dims)].copy() if dims else layout_df.copy() | |
filtered_df['order'] = filtered_df['order'].astype(int); filtered_df = filtered_df.sort_values('order').reset_index(drop=True) | |
st.markdown("Edit 'Order' column or drag rows to set PDF page sequence:") | |
edited_df = st.data_editor(filtered_df, column_config={"filename": st.column_config.TextColumn("Filename", disabled=True), "source": None, "width": st.column_config.NumberColumn("Width", disabled=True), "height": st.column_config.NumberColumn("Height", disabled=True), "aspect_ratio": st.column_config.NumberColumn("Aspect Ratio", format="%.2f", disabled=True), "orientation": st.column_config.TextColumn("Orientation", disabled=True), "type": st.column_config.TextColumn("Source Type", disabled=True), "order": st.column_config.NumberColumn("Order", min_value=0, step=1, required=True)}, hide_index=True, use_container_width=True, num_rows="dynamic", key="layout_editor") | |
ordered_layout_df = edited_df.sort_values('order').reset_index(drop=True) | |
ordered_sources_for_pdf = ordered_layout_df['source'].tolist() | |
st.subheader("C. Generate & Download PDF") | |
if st.button("๐๏ธ Generate Image-Sized PDF", key="generate_layout_pdf"): | |
if not ordered_sources_for_pdf: st.warning("No images selected or available after filtering.") | |
else: | |
with st.spinner("Generating PDF..."): pdf_bytes = make_image_sized_pdf(ordered_sources_for_pdf) | |
if pdf_bytes: | |
now = datetime.now(pytz.timezone("US/Central")); prefix = now.strftime("%Y%m%d-%H%M%p") | |
stems = [clean_stem(s) if isinstance(s, str) else clean_stem(getattr(s, 'name', 'upload')) for s in ordered_sources_for_pdf[:4]] | |
basename = " - ".join(stems) or "Layout"; pdf_fname = f"{prefix}_{basename}.pdf"; pdf_fname = re.sub(r'[^\w\- \.]', '_', pdf_fname) | |
st.success(f"โ PDF ready: **{pdf_fname}**") | |
st.download_button("โฌ๏ธ Download PDF", data=pdf_bytes, file_name=pdf_fname, mime="application/pdf", key="download_layout_pdf") | |
st.markdown("#### Preview First Page") | |
try: | |
doc = fitz.open(stream=pdf_bytes, filetype='pdf') | |
if len(doc) > 0: pix = doc[0].get_pixmap(matrix=fitz.Matrix(1.0, 1.0)); preview_img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); st.image(preview_img, caption=f"Preview of {pdf_fname} (Page 1)", use_container_width=True) | |
else: st.warning("Generated PDF appears empty.") | |
doc.close() | |
except Exception as preview_err: st.warning(f"Could not generate PDF preview: {preview_err}"); logger.warning(f"PDF preview error for {pdf_fname}: {preview_err}") | |
else: st.error("PDF generation failed. Check logs or image files.") | |
# --- Tab 2: Camera Snap (Keep from previous merge) --- | |
with tabs[1]: | |
# ... (Code from previous merge for this tab) ... | |
st.header("Camera Snap ๐ท") | |
st.subheader("Single Capture (Adds to General Gallery)") | |
cols = st.columns(2) | |
with cols[0]: | |
cam0_img = st.camera_input("Take a picture - Cam 0", key="main_cam0") | |
if cam0_img: | |
filename = generate_filename("cam0_snap"); | |
if st.session_state.get('cam0_file') and os.path.exists(st.session_state['cam0_file']): | |
try: | |
os.remove(st.session_state['cam0_file']) | |
except OSError: | |
pass | |
try: | |
with open(filename, "wb") as f: f.write(cam0_img.getvalue()) | |
st.session_state['cam0_file'] = filename; st.session_state['history'].append(f"Snapshot from Cam 0: {filename}"); st.image(Image.open(filename), caption="Camera 0 Snap", use_container_width=True); logger.info(f"Saved snapshot from Camera 0: {filename}"); st.success(f"Saved {filename}") | |
update_gallery(); | |
except Exception as e: | |
st.error(f"Failed to save Cam 0 snap: {e}"); logger.error(f"Failed to save Cam 0 snap {filename}: {e}") | |
with cols[1]: | |
cam1_img = st.camera_input("Take a picture - Cam 1", key="main_cam1") | |
if cam1_img: | |
filename = generate_filename("cam1_snap") | |
if st.session_state.get('cam1_file') and os.path.exists(st.session_state['cam1_file']): | |
try: | |
os.remove(st.session_state['cam1_file']) | |
except OSError: | |
pass | |
try: | |
with open(filename, "wb") as f: f.write(cam1_img.getvalue()) | |
st.session_state['cam1_file'] = filename; st.session_state['history'].append(f"Snapshot from Cam 1: {filename}"); st.image(Image.open(filename), caption="Camera 1 Snap", use_container_width=True); logger.info(f"Saved snapshot from Camera 1: {filename}"); st.success(f"Saved {filename}") | |
update_gallery(); | |
except Exception as e: st.error(f"Failed to save Cam 1 snap: {e}"); logger.error(f"Failed to save Cam 1 snap {filename}: {e}") | |
# --- Tab 3: Download PDFs (Keep from previous merge) --- | |
with tabs[2]: | |
# ... (Code from previous merge for this tab) ... | |
st.header("Download PDFs ๐ฅ") | |
st.markdown("Download PDFs from URLs and optionally create image snapshots.") | |
if st.button("Load Example arXiv URLs ๐", key="load_examples"): | |
example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1706.03762", "https://arxiv.org/pdf/2402.17764", "https://www.clickdimensions.com/links/ACCERL/"] | |
st.session_state['pdf_urls_input'] = "\n".join(example_urls) | |
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls_input', ""), height=150, key="pdf_urls_textarea") | |
if st.button("Robo-Download PDFs ๐ค", key="download_pdfs_button"): | |
urls = [url.strip() for url in url_input.strip().split("\n") if url.strip()] | |
if not urls: st.warning("Please enter at least one URL.") | |
else: | |
progress_bar = st.progress(0); status_text = st.empty(); total_urls = len(urls); download_count = 0; existing_pdfs = get_pdf_files() | |
for idx, url in enumerate(urls): | |
output_path = pdf_url_to_filename(url); status_text.text(f"Processing {idx + 1}/{total_urls}: {os.path.basename(output_path)}..."); progress_bar.progress((idx + 1) / total_urls) | |
if output_path in existing_pdfs: st.info(f"Already exists: {os.path.basename(output_path)}"); st.session_state['downloaded_pdfs'][url] = output_path; st.session_state['asset_checkboxes'][output_path] = st.session_state['asset_checkboxes'].get(output_path, False) | |
else: | |
if download_pdf(url, output_path): st.session_state['downloaded_pdfs'][url] = output_path; logger.info(f"Downloaded PDF from {url} to {output_path}"); st.session_state['history'].append(f"Downloaded PDF: {output_path}"); st.session_state['asset_checkboxes'][output_path] = False; download_count += 1; existing_pdfs.append(output_path) | |
else: st.error(f"Failed to download: {url}") | |
status_text.success(f"Download process complete! Successfully downloaded {download_count} new PDFs.") | |
if download_count > 0: update_gallery(); | |
st.subheader("Create Snapshots from Gallery PDFs") | |
snapshot_mode = st.selectbox("Snapshot Mode", ["First Page (High-Res)", "First Two Pages (High-Res)", "All Pages (High-Res)", "First Page (Low-Res Preview)"], key="pdf_snapshot_mode") | |
resolution_map = {"First Page (High-Res)": 2.0, "First Two Pages (High-Res)": 2.0, "All Pages (High-Res)": 2.0, "First Page (Low-Res Preview)": 1.0} | |
mode_key_map = {"First Page (High-Res)": "single", "First Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages", "First Page (Low-Res Preview)": "single"} | |
resolution = resolution_map[snapshot_mode]; mode_key = mode_key_map[snapshot_mode] | |
if st.button("Snapshot Selected PDFs ๐ธ", key="snapshot_selected_pdfs"): | |
selected_pdfs = [path for path in get_gallery_files(['pdf']) if st.session_state['asset_checkboxes'].get(path, False)] | |
if not selected_pdfs: st.warning("No PDFs selected in the sidebar gallery!") | |
else: | |
st.info(f"Starting snapshot process for {len(selected_pdfs)} selected PDF(s)..."); snapshot_count = 0; total_snapshots_generated = 0 | |
for pdf_path in selected_pdfs: | |
if not os.path.exists(pdf_path): st.warning(f"File not found: {pdf_path}. Skipping."); continue | |
new_snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key, resolution)) | |
if new_snapshots: | |
snapshot_count += 1; total_snapshots_generated += len(new_snapshots) | |
st.write(f"Snapshots for {os.path.basename(pdf_path)}:"); cols = st.columns(3) | |
for i, snap_path in enumerate(new_snapshots): | |
with cols[i % 3]: st.image(Image.open(snap_path), caption=os.path.basename(snap_path), use_container_width=True); st.session_state['asset_checkboxes'][snap_path] = False # Add to gallery | |
if total_snapshots_generated > 0: st.success(f"Generated {total_snapshots_generated} snapshots from {snapshot_count} PDFs."); update_gallery(); | |
else: st.warning("No snapshots were generated. Check logs or PDF files.") | |
# --- Tab 4: Build Titan (Local Models) --- | |
with tabs[3]: | |
st.header("Build Titan (Local Models) ๐ฑ") | |
st.markdown("Download and save models from Hugging Face Hub for local use.") | |
if not _transformers_available: | |
st.error("Transformers library not available. Cannot download or load local models.") | |
else: | |
build_model_type = st.selectbox( | |
"Select Model Type", | |
["Causal LM", "Vision/Multimodal", "OCR", "Diffusion"], # Added more types | |
key="build_type_local" | |
) | |
st.subheader(f"Download {build_model_type} Model") | |
# Model ID Input (allow searching/pasting) | |
hf_model_id = st.text_input( | |
"Hugging Face Model ID", | |
placeholder=f"e.g., {'google/gemma-2-9b-it' if build_model_type == 'Causal LM' else 'llava-hf/llava-1.5-7b-hf' if build_model_type == 'Vision/Multimodal' else 'microsoft/trocr-base-handwritten' if build_model_type == 'OCR' else 'stabilityai/stable-diffusion-xl-base-1.0'}", | |
key="build_hf_model_id" | |
) | |
local_model_name = st.text_input( | |
"Local Name for this Model", | |
value=f"{build_model_type.split('/')[0].lower()}_{os.path.basename(hf_model_id).replace('.','') if hf_model_id else 'model'}", | |
key="build_local_name", | |
help="A unique name to identify this model locally." | |
) | |
# Add a note about token requirements for gated models | |
st.info("Private or gated models require a valid Hugging Face token (set via HF_TOKEN env var or the Custom Key in sidebar API settings).") | |
if st.button(f"Download & Save '{hf_model_id}' Locally", key="build_download_button", disabled=not hf_model_id or not local_model_name): | |
# Validate local name uniqueness | |
if local_model_name in [os.path.basename(p) for p in st.session_state.get('local_models', {})]: | |
st.error(f"A local model named '{local_model_name}' already exists. Choose a different name.") | |
else: | |
model_type_map = { | |
"Causal LM": "causal", "Vision/Multimodal": "vision", "OCR": "ocr", "Diffusion": "diffusion" | |
} | |
model_type_short = model_type_map.get(build_model_type, "unknown") | |
config = LocalModelConfig( | |
name=local_model_name, | |
hf_id=hf_model_id, | |
model_type=model_type_short | |
) | |
save_path = config.get_full_path() | |
os.makedirs(os.path.dirname(save_path), exist_ok=True) | |
st.info(f"Attempting to download '{hf_model_id}' to '{save_path}'...") | |
progress_bar_build = st.progress(0) | |
status_text_build = st.empty() | |
token_build = st.session_state.hf_custom_key or HF_TOKEN or None | |
try: | |
if build_model_type == "Diffusion": | |
# Use Diffusers library download | |
if not _diffusers_available: raise ImportError("Diffusers library required for diffusion models.") | |
# Diffusers downloads directly, no explicit save needed after load typically | |
status_text_build.text("Downloading diffusion model pipeline...") | |
pipeline_obj = StableDiffusionPipeline.from_pretrained(hf_model_id, token=token_build) | |
status_text_build.text("Saving diffusion model pipeline...") | |
pipeline_obj.save_pretrained(save_path) | |
# Store info, but maybe not the full pipeline object in session state due to size | |
st.session_state.local_models[save_path] = {'type': 'diffusion', 'hf_id': hf_model_id, 'model':None, 'tokenizer':None} # Mark as downloaded | |
st.success(f"Diffusion model '{hf_model_id}' downloaded and saved to {save_path}") | |
else: | |
# Use Transformers library download | |
status_text_build.text("Downloading model components...") | |
# Determine AutoModel class based on type (can be refined) | |
if model_type_short == 'causal': | |
model_class = AutoModelForCausalLM | |
tokenizer_class = AutoTokenizer | |
processor_class = None | |
elif model_type_short == 'vision': | |
model_class = AutoModelForVision2Seq # Common for VQA/Captioning | |
processor_class = AutoProcessor # Handles image+text | |
tokenizer_class = None # Usually part of processor | |
elif model_type_short == 'ocr': | |
model_class = AutoModelForVision2Seq # TrOCR uses this | |
processor_class = AutoProcessor | |
tokenizer_class = None | |
else: | |
raise ValueError(f"Unknown model type for downloading: {model_type_short}") | |
# Download and save model | |
model_obj = model_class.from_pretrained(hf_model_id, token=token_build) | |
model_obj.save_pretrained(save_path) | |
status_text_build.text(f"Model saved. Downloading processor/tokenizer...") | |
# Download and save tokenizer/processor | |
if processor_class: | |
processor_obj = processor_class.from_pretrained(hf_model_id, token=token_build) | |
processor_obj.save_pretrained(save_path) | |
tokenizer_obj = getattr(processor_obj, 'tokenizer', None) # Get tokenizer from processor if exists | |
elif tokenizer_class: | |
tokenizer_obj = tokenizer_class.from_pretrained(hf_model_id, token=token_build) | |
tokenizer_obj.save_pretrained(save_path) | |
processor_obj = None # No separate processor | |
else: # Should not happen with current logic | |
tokenizer_obj = None | |
processor_obj = None | |
# --- Load into memory and store in session state --- | |
# This might consume significant memory! Consider loading on demand instead. | |
status_text_build.text(f"Loading '{local_model_name}' into memory...") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
reloaded_model = model_class.from_pretrained(save_path).to(device) | |
reloaded_processor = processor_class.from_pretrained(save_path) if processor_class else None | |
reloaded_tokenizer = tokenizer_class.from_pretrained(save_path) if tokenizer_class and not reloaded_processor else getattr(reloaded_processor, 'tokenizer', None) | |
st.session_state.local_models[save_path] = { | |
'type': model_type_short, | |
'hf_id': hf_model_id, | |
'model': reloaded_model, | |
'tokenizer': reloaded_tokenizer, | |
'processor': reloaded_processor, # Store processor if it exists | |
} | |
st.success(f"{build_model_type} model '{hf_model_id}' downloaded to {save_path} and loaded into memory ({device}).") | |
# Optionally select the newly loaded model | |
st.session_state.selected_local_model_path = save_path | |
except (RepositoryNotFoundError, GatedRepoError) as e: | |
st.error(f"Download failed: Repository not found or requires specific access/token. Check Model ID and your HF token. Error: {e}") | |
logger.error(f"Download failed for {hf_model_id}: {e}") | |
if os.path.exists(save_path): shutil.rmtree(save_path) # Clean up partial download | |
except ImportError as e: | |
st.error(f"Download failed: Required library missing. {e}") | |
logger.error(f"ImportError during download of {hf_model_id}: {e}") | |
except Exception as e: | |
st.error(f"An unexpected error occurred during download: {e}") | |
logger.error(f"Download failed for {hf_model_id}: {e}") | |
if os.path.exists(save_path): shutil.rmtree(save_path) # Clean up | |
finally: | |
progress_bar_build.progress(1.0) | |
status_text_build.empty() | |
st.subheader("Manage Local Models") | |
loaded_model_paths = list(st.session_state.get('local_models', {}).keys()) | |
if not loaded_model_paths: | |
st.info("No models downloaded yet.") | |
else: | |
models_df_data = [] | |
for path, data in st.session_state.local_models.items(): | |
models_df_data.append({ | |
"Local Name": os.path.basename(path), | |
"Type": data.get('type', 'N/A'), | |
"HF ID": data.get('hf_id', 'N/A'), | |
"Loaded": "Yes" if data.get('model') else "No (Info only)", | |
"Path": path | |
}) | |
models_df = pd.DataFrame(models_df_data) | |
st.dataframe(models_df, use_container_width=True, hide_index=True, column_order=["Local Name", "Type", "HF ID", "Loaded"]) | |
model_to_delete = st.selectbox("Select model to delete", [""] + [os.path.basename(p) for p in loaded_model_paths], key="delete_model_select") | |
if model_to_delete and st.button(f"Delete Local Model '{model_to_delete}'", type="primary"): | |
path_to_delete = next((p for p in loaded_model_paths if os.path.basename(p) == model_to_delete), None) | |
if path_to_delete: | |
try: | |
# Remove from session state first | |
del st.session_state.local_models[path_to_delete] | |
if st.session_state.selected_local_model_path == path_to_delete: | |
st.session_state.selected_local_model_path = None | |
# Delete from disk | |
if os.path.exists(path_to_delete): | |
shutil.rmtree(path_to_delete) | |
st.success(f"Deleted model '{model_to_delete}' and its files.") | |
logger.info(f"Deleted local model: {path_to_delete}") | |
except Exception as e: | |
st.error(f"Failed to delete model '{model_to_delete}': {e}") | |
logger.error(f"Failed to delete model {path_to_delete}: {e}") | |
# --- Tab 5: PDF Process (HF) --- | |
with tabs[4]: | |
st.header("PDF Process with HF Models ๐") | |
st.markdown("Upload PDFs, view pages, and extract text using selected HF models (API or Local).") | |
# Inference Source Selection | |
pdf_use_api = st.radio( | |
"Choose Processing Method", | |
["Hugging Face API", "Loaded Local Model"], | |
key="pdf_process_source", | |
horizontal=True, | |
help="API uses settings from sidebar. Local uses the selected local model (if suitable)." | |
) | |
if pdf_use_api == "Hugging Face API": | |
st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}") | |
else: | |
if st.session_state.selected_local_model_path: | |
st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}") | |
else: | |
st.warning("No local model selected. Please select one in the sidebar.") | |
uploaded_pdfs_process_hf = st.file_uploader("Upload PDF files to process", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader_hf") | |
if uploaded_pdfs_process_hf: | |
# Simplified: Process only the first page for demonstration | |
process_all_pages_pdf = st.checkbox("Process All Pages (can be slow/expensive)", value=False, key="pdf_process_all_hf") | |
pdf_prompt = st.text_area("Prompt for PDF Page Processing", "Extract the text content from this page.", key="pdf_process_prompt_hf") | |
if st.button("Process Uploaded PDFs with HF", key="process_uploaded_pdfs_hf"): | |
if pdf_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path: | |
st.error("Cannot process locally: No local model selected.") | |
else: | |
combined_text_output_hf = f"# HF PDF Processing Results ({'API' if pdf_use_api else 'Local'})\n\n" | |
total_pages_processed_hf = 0 | |
output_placeholder_hf = st.container() | |
for pdf_file in uploaded_pdfs_process_hf: | |
output_placeholder_hf.markdown(f"--- \n### Processing: {pdf_file.name}") | |
# Read PDF bytes | |
pdf_bytes = pdf_file.read() | |
try: | |
doc = fitz.open("pdf", pdf_bytes) # Open from bytes | |
num_pages = len(doc) | |
pages_to_process = range(num_pages) if process_all_pages_pdf else range(min(1, num_pages)) # Limit to 1 unless checked | |
output_placeholder_hf.info(f"Processing {len(pages_to_process)} of {num_pages} pages...") | |
doc_text = f"## File: {pdf_file.name}\n\n" | |
for i in pages_to_process: | |
page_placeholder = output_placeholder_hf.empty() | |
page_placeholder.info(f"Processing Page {i + 1}/{num_pages}...") | |
page = doc[i] | |
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
# Display image and process | |
cols_pdf = output_placeholder_hf.columns(2) | |
cols_pdf[0].image(img, caption=f"Page {i+1}", use_container_width=True) | |
with cols_pdf[1]: | |
# Use the new image processing function | |
# NOTE: This relies on the process_image_hf implementation | |
# which is currently basic/placeholder for local models. | |
with st.spinner("Processing page with HF model..."): | |
hf_text = process_image_hf(img, pdf_prompt, use_api=pdf_use_api) | |
st.text_area(f"Result (Page {i+1})", hf_text, height=250, key=f"pdf_hf_out_{pdf_file.name}_{i}") | |
doc_text += f"### Page {i + 1}\n\n{hf_text}\n\n---\n\n" | |
total_pages_processed_hf += 1 | |
page_placeholder.empty() # Clear status message | |
combined_text_output_hf += doc_text | |
doc.close() | |
except (fitz.fitz.FileDataError, fitz.fitz.RuntimeException) as pdf_err: | |
output_placeholder_hf.error(f"Error opening PDF {pdf_file.name}: {pdf_err}. Skipping.") | |
except Exception as e: | |
output_placeholder_hf.error(f"Error processing {pdf_file.name}: {str(e)}") | |
if total_pages_processed_hf > 0: | |
st.markdown("--- \n### Combined Processing Results") | |
st.text_area("Full Output", combined_text_output_hf, height=400, key="combined_pdf_hf_output") | |
output_filename_pdf_hf = generate_filename("hf_processed_pdfs", "md") | |
try: | |
with open(output_filename_pdf_hf, "w", encoding="utf-8") as f: f.write(combined_text_output_hf) | |
st.success(f"Combined output saved to {output_filename_pdf_hf}") | |
st.markdown(get_download_link(output_filename_pdf_hf, "text/markdown", "Download Combined MD"), unsafe_allow_html=True) | |
st.session_state['asset_checkboxes'][output_filename_pdf_hf] = False; update_gallery() | |
except IOError as e: st.error(f"Failed to save combined output file: {e}") | |
# --- Tab 6: Image Process (HF) --- | |
with tabs[5]: | |
st.header("Image Process with HF Models ๐ผ๏ธ") | |
st.markdown("Upload images and process them using selected HF models (API or Local).") | |
img_use_api = st.radio( | |
"Choose Processing Method", | |
["Hugging Face API", "Loaded Local Model"], | |
key="img_process_source_hf", | |
horizontal=True | |
) | |
if img_use_api == "Hugging Face API": | |
st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}") | |
else: | |
if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}") | |
else: st.warning("No local model selected.") | |
img_prompt_hf = st.text_area("Prompt for Image Processing", "Describe this image in detail.", key="img_process_prompt_hf") | |
uploaded_images_process_hf = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader_hf") | |
if uploaded_images_process_hf: | |
if st.button("Process Uploaded Images with HF", key="process_images_hf"): | |
if img_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path: | |
st.error("Cannot process locally: No local model selected.") | |
else: | |
combined_img_text_hf = f"# HF Image Processing Results ({'API' if img_use_api else 'Local'})\n\n**Prompt:** {img_prompt_hf}\n\n---\n\n" | |
images_processed_hf = 0 | |
output_img_placeholder_hf = st.container() | |
for img_file in uploaded_images_process_hf: | |
output_img_placeholder_hf.markdown(f"### Processing: {img_file.name}") | |
try: | |
img = Image.open(img_file) | |
cols_img_hf = output_img_placeholder_hf.columns(2) | |
cols_img_hf[0].image(img, caption=f"Input: {img_file.name}", use_container_width=True) | |
with cols_img_hf[1], st.spinner("Processing image with HF model..."): | |
# Use the new image processing function | |
hf_img_text = process_image_hf(img, img_prompt_hf, use_api=img_use_api) | |
st.text_area(f"Result", hf_img_text, height=300, key=f"img_hf_out_{img_file.name}") | |
combined_img_text_hf += f"## Image: {img_file.name}\n\n{hf_img_text}\n\n---\n\n" | |
images_processed_hf += 1 | |
except UnidentifiedImageError: output_img_placeholder_hf.error(f"Invalid Image: {img_file.name}. Skipping.") | |
except Exception as e: output_img_placeholder_hf.error(f"Error processing {img_file.name}: {str(e)}") | |
if images_processed_hf > 0: | |
st.markdown("--- \n### Combined Processing Results") | |
st.text_area("Full Output", combined_img_text_hf, height=400, key="combined_img_hf_output") | |
output_filename_img_hf = generate_filename("hf_processed_images", "md") | |
try: | |
with open(output_filename_img_hf, "w", encoding="utf-8") as f: f.write(combined_img_text_hf) | |
st.success(f"Combined output saved to {output_filename_img_hf}") | |
st.markdown(get_download_link(output_filename_img_hf, "text/markdown", "Download Combined MD"), unsafe_allow_html=True) | |
st.session_state['asset_checkboxes'][output_filename_img_hf] = False; update_gallery() | |
except IOError as e: st.error(f"Failed to save combined output file: {e}") | |
# --- Tab 7: Text Process (HF) --- | |
with tabs[6]: | |
st.header("Text Process with HF Models ๐") | |
st.markdown("Process Markdown (.md) or Text (.txt) files using selected HF models (API or Local).") | |
text_use_api = st.radio( | |
"Choose Processing Method", | |
["Hugging Face API", "Loaded Local Model"], | |
key="text_process_source_hf", | |
horizontal=True | |
) | |
if text_use_api == "Hugging Face API": | |
st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}") | |
else: | |
if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}") | |
else: st.warning("No local model selected.") | |
text_files_hf = get_gallery_files(['md', 'txt']) | |
if not text_files_hf: | |
st.warning("No .md or .txt files in gallery to process.") | |
else: | |
selected_text_file_hf = st.selectbox( | |
"Select Text/MD File to Process", | |
options=[""] + text_files_hf, | |
format_func=lambda x: os.path.basename(x) if x else "Select a file...", | |
key="text_process_select_hf" | |
) | |
if selected_text_file_hf: | |
st.write(f"Selected: {os.path.basename(selected_text_file_hf)}") | |
try: | |
with open(selected_text_file_hf, "r", encoding="utf-8", errors='ignore') as f: | |
content_text_hf = f.read() | |
st.text_area("File Content Preview", content_text_hf[:1000] + ("..." if len(content_text_hf) > 1000 else ""), height=200, key="text_content_preview_hf") | |
prompt_text_hf = st.text_area( | |
"Enter Prompt for this File", | |
"Summarize the key points of this text.", | |
key="text_individual_prompt_hf" | |
) | |
if st.button(f"Process '{os.path.basename(selected_text_file_hf)}' with HF", key=f"process_text_hf_btn"): | |
if text_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path: | |
st.error("Cannot process locally: No local model selected.") | |
else: | |
with st.spinner("Processing text with HF model..."): | |
result_text_processed = process_text_hf(content_text_hf, prompt_text_hf, use_api=text_use_api) | |
st.markdown("### Processing Result") | |
st.markdown(result_text_processed) # Display result | |
output_filename_text_hf = generate_filename(f"hf_processed_{os.path.splitext(os.path.basename(selected_text_file_hf))[0]}", "md") | |
try: | |
with open(output_filename_text_hf, "w", encoding="utf-8") as f: f.write(result_text_processed) | |
st.success(f"Result saved to {output_filename_text_hf}") | |
st.markdown(get_download_link(output_filename_text_hf, "text/markdown", "Download Result MD"), unsafe_allow_html=True) | |
st.session_state['asset_checkboxes'][output_filename_text_hf] = False; update_gallery() | |
except IOError as e: st.error(f"Failed to save result file: {e}") | |
except FileNotFoundError: st.error("Selected file not found.") | |
except Exception as e: st.error(f"Error reading file: {e}") | |
# --- Tab 8: Test OCR (HF) --- | |
with tabs[7]: | |
st.header("Test OCR with HF Models ๐") | |
st.markdown("Select an image/PDF and run OCR using HF models (API or Local - requires suitable local model).") | |
ocr_use_api = st.radio( | |
"Choose OCR Method", | |
["Hugging Face API (Basic Captioning/OCR)", "Loaded Local OCR Model"], | |
key="ocr_source_hf", | |
horizontal=True, | |
help="API uses basic image-to-text. Local requires a dedicated OCR model (e.g., TrOCR) to be loaded." | |
) | |
if ocr_use_api == "Loaded Local OCR Model": | |
if st.session_state.selected_local_model_path: | |
model_type = st.session_state.local_models.get(st.session_state.selected_local_model_path,{}).get('type') | |
if model_type != 'ocr': | |
st.warning(f"Selected local model ({os.path.basename(st.session_state.selected_local_model_path)}) is type '{model_type}', not 'ocr'. Results may be poor.") | |
else: | |
st.info(f"Using Local OCR Model: {os.path.basename(st.session_state.selected_local_model_path)}") | |
else: st.warning("No local model selected.") | |
gallery_files_ocr_hf = get_gallery_files(['png', 'jpg', 'jpeg', 'pdf']) | |
if not gallery_files_ocr_hf: | |
st.warning("No images or PDFs in gallery.") | |
else: | |
selected_file_ocr_hf = st.selectbox( | |
"Select Image or PDF from Gallery for OCR", | |
options=[""] + gallery_files_ocr_hf, | |
format_func=lambda x: os.path.basename(x) if x else "Select a file...", | |
key="ocr_select_file_hf" | |
) | |
if selected_file_ocr_hf: | |
st.write(f"Selected: {os.path.basename(selected_file_ocr_hf)}") | |
file_ext_ocr_hf = os.path.splitext(selected_file_ocr_hf)[1].lower() | |
image_to_ocr_hf = None; page_info_hf = "" | |
try: | |
if file_ext_ocr_hf in ['.png', '.jpg', '.jpeg']: image_to_ocr_hf = Image.open(selected_file_ocr_hf) | |
elif file_ext_ocr_hf == '.pdf': | |
doc = fitz.open(selected_file_ocr_hf) | |
if len(doc) > 0: pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image_to_ocr_hf = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); page_info_hf = " (Page 1)" | |
else: st.warning("Selected PDF is empty.") | |
doc.close() | |
if image_to_ocr_hf: | |
st.image(image_to_ocr_hf, caption=f"Image for OCR{page_info_hf}", use_container_width=True) | |
if st.button("Run HF OCR on this Image ๐", key="ocr_run_button_hf"): | |
if ocr_use_api == "Loaded Local OCR Model" and not st.session_state.selected_local_model_path: | |
st.error("Cannot run locally: No local model selected.") | |
else: | |
output_ocr_file_hf = generate_filename(f"hf_ocr_{os.path.splitext(os.path.basename(selected_file_ocr_hf))[0]}", "txt") | |
st.session_state['processing']['ocr'] = True | |
with st.spinner("Performing OCR with HF model..."): | |
ocr_result_hf = asyncio.run(process_hf_ocr(image_to_ocr_hf, output_ocr_file_hf, use_api=ocr_use_api)) | |
st.session_state['processing']['ocr'] = False | |
st.text_area("OCR Result", ocr_result_hf, height=300, key="ocr_result_display_hf") | |
if ocr_result_hf and not ocr_result_hf.startswith("Error") and not ocr_result_hf.startswith("["): | |
entry = f"HF OCR: {selected_file_ocr_hf}{page_info_hf} -> {output_ocr_file_hf}" | |
st.session_state['history'].append(entry) | |
if len(ocr_result_hf) > 5: # Minimal check | |
st.success(f"OCR output saved to {output_ocr_file_hf}") | |
st.markdown(get_download_link(output_ocr_file_hf, "text/plain", "Download OCR Text"), unsafe_allow_html=True) | |
st.session_state['asset_checkboxes'][output_ocr_file_hf] = False; update_gallery() | |
else: st.warning("OCR output seems short/empty.") | |
else: st.error(f"OCR failed. {ocr_result_hf}") | |
except Exception as e: st.error(f"Error loading file for OCR: {e}") | |
# --- Tab 9: Test Image Gen (Diffusers) --- | |
with tabs[8]: | |
st.header("Test Image Generation (Diffusers) ๐จ") | |
st.markdown("Generate images using Stable Diffusion models loaded locally via the Diffusers library.") | |
if not _diffusers_available: | |
st.error("Diffusers library is required for image generation.") | |
else: | |
# Select from locally downloaded *diffusion* models | |
local_diffusion_paths = get_local_model_paths("diffusion") | |
if not local_diffusion_paths: | |
st.warning("No local diffusion models found. Download one using the 'Build Titan' tab.") | |
selected_diffusion_model_path = None | |
else: | |
selected_diffusion_model_path = st.selectbox( | |
"Select Local Diffusion Model", | |
options=[""] + local_diffusion_paths, | |
format_func=lambda x: os.path.basename(x) if x else "Select...", | |
key="imggen_diffusion_model_select" | |
) | |
prompt_imggen_diff = st.text_area("Image Generation Prompt", "A photorealistic cat wearing sunglasses, studio lighting", key="imggen_prompt_diff") | |
neg_prompt_imggen_diff = st.text_area("Negative Prompt (Optional)", "ugly, deformed, blurry, low quality", key="imggen_neg_prompt_diff") | |
steps_imggen_diff = st.slider("Inference Steps", 10, 100, 25, key="imggen_steps") | |
guidance_imggen_diff = st.slider("Guidance Scale", 1.0, 20.0, 7.5, step=0.5, key="imggen_guidance") | |
if st.button("Generate Image ๐", key="imggen_run_button_diff", disabled=not selected_diffusion_model_path): | |
if not prompt_imggen_diff: st.warning("Please enter a prompt.") | |
else: | |
status_imggen = st.empty() | |
try: | |
# Load pipeline from saved path on demand | |
status_imggen.info(f"Loading diffusion pipeline: {os.path.basename(selected_diffusion_model_path)}...") | |
# Determine device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Use float16 on GPU if available | |
pipe = StableDiffusionPipeline.from_pretrained(selected_diffusion_model_path, torch_dtype=dtype).to(device) | |
pipe.safety_checker = None # Optional: Disable safety checker if needed | |
status_imggen.info(f"Generating image on {device} ({dtype})...") | |
start_gen_time = time.time() | |
# Generate using the pipeline | |
gen_output = pipe( | |
prompt=prompt_imggen_diff, | |
negative_prompt=neg_prompt_imggen_diff if neg_prompt_imggen_diff else None, | |
num_inference_steps=steps_imggen_diff, | |
guidance_scale=guidance_imggen_diff, | |
# Add seed if desired: generator=torch.Generator(device=device).manual_seed(your_seed) | |
) | |
gen_image = gen_output.images[0] | |
elapsed_gen = int(time.time() - start_gen_time) | |
status_imggen.success(f"Image generated in {elapsed_gen}s!") | |
# Save and display | |
output_imggen_file_diff = generate_filename("diffusion_gen", "png") | |
gen_image.save(output_imggen_file_diff) | |
st.image(gen_image, caption=f"Generated: {output_imggen_file_diff}", use_container_width=True) | |
st.markdown(get_download_link(output_imggen_file_diff, "image/png", "Download Generated Image"), unsafe_allow_html=True) | |
st.session_state['asset_checkboxes'][output_imggen_file_diff] = False; update_gallery() | |
st.session_state['history'].append(f"Diffusion Gen: '{prompt_imggen_diff[:30]}...' -> {output_imggen_file_diff}") | |
except ImportError: st.error("Diffusers or Torch library not found.") | |
except Exception as e: | |
st.error(f"Image generation failed: {e}") | |
logger.error(f"Diffusion generation failed for {selected_diffusion_model_path}: {e}") | |
finally: | |
# Clear pipeline from memory? (Optional, depends on memory usage) | |
if 'pipe' in locals(): del pipe; torch.cuda.empty_cache() if torch.cuda.is_available() else None | |
# --- Tab 10: Character Editor (Keep from previous merge) --- | |
with tabs[9]: | |
# ... (Code from previous merge for this tab) ... | |
st.header("Character Editor ๐งโ๐จ") | |
st.subheader("Create Your Character") | |
load_characters(); existing_char_names = [c['name'] for c in st.session_state.get('characters', [])] | |
form_key = f"character_form_{st.session_state.get('char_form_reset_key', 0)}" | |
with st.form(key=form_key): | |
st.markdown("**Create New Character**") | |
if st.form_submit_button("Randomize Content ๐ฒ"): st.session_state['char_form_reset_key'] = st.session_state.get('char_form_reset_key', 0) + 1; st.rerun() | |
rand_name, rand_gender, rand_intro, rand_greeting = randomize_character_content() | |
name_char = st.text_input("Name (3-25 chars...)", value=rand_name, max_chars=25, key="char_name_input") | |
gender_char = st.radio("Gender", ["Male", "Female"], index=["Male", "Female"].index(rand_gender), key="char_gender_radio") | |
intro_char = st.text_area("Intro (Public description)", value=rand_intro, max_chars=300, height=100, key="char_intro_area") | |
greeting_char = st.text_area("Greeting (First message)", value=rand_greeting, max_chars=300, height=100, key="char_greeting_area") | |
tags_char = st.text_input("Tags (comma-separated)", "OC, friendly", key="char_tags_input") | |
submitted = st.form_submit_button("Create Character โจ") | |
if submitted: | |
error = False | |
if not (3 <= len(name_char) <= 25): st.error("Name must be 3-25 characters."); error = True | |
if not re.match(r'^[a-zA-Z0-9 _-]+$', name_char): st.error("Name contains invalid characters."); error = True | |
if name_char in existing_char_names: st.error(f"Name '{name_char}' already exists!"); error = True | |
if not intro_char or not greeting_char: st.error("Intro/Greeting cannot be empty."); error = True | |
if not error: | |
tag_list = [tag.strip() for tag in tags_char.split(',') if tag.strip()] | |
character_data = {"name": name_char, "gender": gender_char, "intro": intro_char, "greeting": greeting_char, "created_at": datetime.now(pytz.timezone("US/Central")).strftime('%Y-%m-%d %H:%M:%S %Z'), "tags": tag_list} | |
if save_character(character_data): | |
st.success(f"Character '{name_char}' created!"); st.session_state['char_form_reset_key'] = st.session_state.get('char_form_reset_key', 0) + 1; st.rerun() | |
# --- Tab 11: Character Gallery (Keep from previous merge) --- | |
with tabs[10]: | |
# ... (Code from previous merge for this tab) ... | |
st.header("Character Gallery ๐ผ๏ธ") | |
load_characters(); characters_list = st.session_state.get('characters', []) | |
if not characters_list: st.warning("No characters created yet.") | |
else: | |
st.subheader(f"Your Characters ({len(characters_list)})") | |
search_term = st.text_input("Search Characters by Name", key="char_gallery_search") | |
if search_term: characters_list = [c for c in characters_list if search_term.lower() in c['name'].lower()] | |
cols_char_gallery = st.columns(3); chars_to_delete = [] | |
for idx, char in enumerate(characters_list): | |
with cols_char_gallery[idx % 3], st.container(border=True): | |
st.markdown(f"**{char['name']}**"); st.caption(f"Gender: {char.get('gender', 'N/A')}") | |
st.markdown("**Intro:**"); st.markdown(f"> {char.get('intro', '')}") | |
st.markdown("**Greeting:**"); st.markdown(f"> {char.get('greeting', '')}") | |
st.caption(f"Tags: {', '.join(char.get('tags', ['N/A']))}"); st.caption(f"Created: {char.get('created_at', 'N/A')}") | |
delete_key_char = f"delete_char_{char['name']}_{idx}"; | |
if st.button(f"Delete {char['name']}", key=delete_key_char, type="primary"): chars_to_delete.append(char['name']) | |
if chars_to_delete: | |
current_characters = st.session_state.get('characters', []); updated_characters = [c for c in current_characters if c['name'] not in chars_to_delete] | |
st.session_state['characters'] = updated_characters | |
try: | |
with open("characters.json", "w", encoding='utf-8') as f: json.dump(updated_characters, f, indent=2) | |
logger.info(f"Deleted characters: {', '.join(chars_to_delete)}"); st.success(f"Deleted characters: {', '.join(chars_to_delete)}"); st.rerun() | |
except IOError as e: logger.error(f"Failed to save characters.json after deletion: {e}"); st.error("Failed to update character file.") | |
# --- Footer and Persistent Sidebar Elements ------------ | |
# Update Sidebar Gallery (Call this at the end to reflect all changes) | |
update_gallery() | |
# Action Logs in Sidebar | |
st.sidebar.subheader("Action Logs ๐") | |
log_expander = st.sidebar.expander("View Logs", expanded=False) | |
with log_expander: | |
log_text = "\n".join([f"{record.asctime} - {record.levelname} - {record.message}" for record in log_records[-20:]]) | |
st.code(log_text, language='log') | |
# History in Sidebar | |
st.sidebar.subheader("Session History ๐") | |
history_expander = st.sidebar.expander("View History", expanded=False) | |
with history_expander: | |
for entry in reversed(st.session_state.get("history", [])): | |
if entry: history_expander.write(f"- {entry}") | |
st.sidebar.markdown("---") | |
st.sidebar.info("Using Hugging Face models for AI tasks.") | |
st.sidebar.caption("App Modified by AI Assistant") |