File size: 6,167 Bytes
c18db37
 
 
2ef4006
c18db37
08af166
 
 
 
 
 
 
6266cf4
5455896
 
 
ff0ccdb
 
 
8c67835
6266cf4
de6d7ec
8c67835
 
68decb1
efe1021
 
 
 
 
 
 
9b06b1e
 
 
 
 
 
 
 
 
 
 
 
 
a1b669a
d434e57
85064b1
 
 
6481f63
 
9b06b1e
 
f240a0c
9b06b1e
8f99b37
9b06b1e
8c67835
9b06b1e
08af166
5455896
 
 
 
 
 
6481f63
 
85064b1
 
c18db37
 
 
 
d434e57
c18db37
 
 
 
 
 
 
c60c8cf
48295f3
c60c8cf
 
 
 
c18db37
dd5e8e8
 
f60697c
c18db37
d434e57
c18db37
 
 
 
 
 
 
 
 
 
 
 
85064b1
8c67835
 
20415a9
 
 
8c67835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117b6a7
8c67835
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import torch
import gradio as gr
from datasets import load_dataset

# PersistDataset -----
import os
import csv
from gradio import inputs, outputs
import huggingface_hub
from huggingface_hub import Repository, hf_hub_download, upload_file
from datetime import datetime

#fastapi is where its at:  share your app, share your api
import fastapi

from typing import List, Dict
import httpx
import pandas as pd
import datasets as ds

# -------------------------------------------- For Memory - you will need to set up a dataset and HF_TOKEN ---------
#UseMemory=False
UseMemory=True


DATASET_REPO_URL="https://huggingface.co/datasets/awacke1/ChatbotMemory.csv"
DATASET_REPO_ID="awacke1/ChatbotMemory.csv"
DATA_FILENAME="ChatbotMemory.csv"
DATA_FILE=os.path.join("data", DATA_FILENAME)
HF_TOKEN=os.environ.get("HF_TOKEN")

if UseMemory: 
   try:
      hf_hub_download(
      repo_id=DATASET_REPO_ID,
      filename=DATA_FILENAME,
      cache_dir=DATA_DIRNAME,
      force_filename=DATA_FILENAME
      )
   except:
      print("file not found")
      repo = Repository(
      local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
      )

def get_df(name: str):
    dataset = load_dataset(str, split="train")
    return dataset
    
#def store_message(name: str, message: str) -> str:
def store_message(name: str, message: str):
    if name and message:
        with open(DATA_FILE, "a") as csvfile:
            writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ])
            writer.writerow(
                {"time": str(datetime.now()), "message": message.strip(), "name": name.strip()  }
            )
        #repo.git_pull(rebase=True)
        commit_url = repo.push_to_hub()

        # test api retrieval of any dataset that is saved, then return it...
        # app = FastAPI()
        # see: https://gradio.app/sharing_your_app/#api-page

        # f=get_df(DATASET_REPO_ID)
        # print(f)
    #return commit_url
    return ""
# ----------------------------------------------- For Memory
    
mname = "facebook/blenderbot-400M-distill"
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
tokenizer = BlenderbotTokenizer.from_pretrained(mname)

def take_last_tokens(inputs, note_history, history):
    """Filter the last 128 tokens"""
    if inputs['input_ids'].shape[1] > 128:
        inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
        inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
        note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
        history = history[1:]
    return inputs, note_history, history
    
def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay.
    """Add a note to the historical information"""
    note_history.append(note)
    note_history = '</s> <s>'.join(note_history)
    return [note_history]

title = "💬ChatBack🧠💾"
description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. 
 Current Best SOTA Chatbot:  https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+ChatBack%21+Are+you+ready+to+rock%3F  """

def chat(message, history):
    history = history or []
    if history: 
        history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
    else:
        history_useful = []
    history_useful = add_note_to_history(message, history_useful)
    inputs = tokenizer(history_useful, return_tensors="pt")
    inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
    reply_ids = model.generate(**inputs)
    response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
    history_useful = add_note_to_history(response, history_useful)
    list_history = history_useful[0].split('</s> <s>')
    history.append((list_history[-2], list_history[-1]))  
    
    df=pd.DataFrame()
    
    if UseMemory: 
        store_message(message, response) # Save to dataset  -- uncomment with code above, create a dataset to store and add your HF_TOKEN from profile to this repo to use.
        df = ds.load_dataset("awacke1/ChatbotMemory.csv")
        df = df["train"].to_pandas()
        df = df.sort_values(by="time",ascending=False)
        #df.sort_index(axis=1, ascending=False)
    return history, df
    #return df
    #return history,  df

    
#gr.Interface(
#    fn=chat,
#    theme="huggingface",
#    css=".footer {display:none !important}",
#    inputs=["text", "state"],
#    #outputs=["chatbot", "state", "text"],
#    outputs=["chatbot", "state", "dataframe"],
#    title=title,
#    allow_flagging="never",
#    description=f"Gradio chatbot backed by memory in a dataset repository.",
#    article=f"The memory dataset for saves is [{DATASET_REPO_URL}]({DATASET_REPO_URL}) And here: https://huggingface.co/spaces/awacke1/DatasetAnalyzer  Code and datasets on chat are here  hf  tk: https://paperswithcode.com/datasets?q=chat&v=lst&o=newest"
#    ).launch(debug=True)



with gr.Blocks() as demo:
  gr.Markdown("<h1><center>🍰Gradio chatbot backed by memory in a dataset repository.🎨</center></h1>")
  #gr.Markdown("The memory dataset for saves is [{DATASET_REPO_URL}]({DATASET_REPO_URL}) And here: https://huggingface.co/spaces/awacke1/DatasetAnalyzer  Code and datasets on chat are here  hf  tk: https://paperswithcode.com/datasets?q=chat&v=lst&o=newest")
  
  with gr.Row():
    t1 = gr.Textbox(lines=1, default="", label="Chat Text:")
    b1 = gr.Button("Send Message")
    
  with gr.Row(): # inputs and buttons
    s1 = gr.State([])
    s2 = gr.Markdown()
  with gr.Row():
    df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate")
    #chatoutput = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate", datatype = ["markdown", "markdown"], headers=['url', 'prompt'])
    
  b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1]) 

demo.launch(debug=True, show_error=True)