File size: 7,046 Bytes
c18db37
 
 
 
08af166
 
 
 
 
 
 
6266cf4
ff0ccdb
 
 
6266cf4
de6d7ec
9b06b1e
 
 
 
 
 
 
 
6266cf4
9b06b1e
 
 
 
 
 
 
 
 
 
 
 
 
a1b669a
ff0ccdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b06b1e
 
 
f240a0c
9b06b1e
8f99b37
9b06b1e
de6d7ec
9b06b1e
 
08af166
c18db37
 
 
 
c60c8cf
c18db37
 
 
 
 
 
 
 
c60c8cf
 
 
 
 
 
c18db37
9b06b1e
dd5e8e8
 
f60697c
c18db37
a1b669a
c18db37
 
 
 
 
 
 
 
 
 
 
 
 
 
9b06b1e
 
 
c18db37
 
9b06b1e
c18db37
 
 
 
 
 
 
 
9b06b1e
6ca51ed
f60697c
9b06b1e
5816dc1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import torch
import gradio as gr

# PersistDataset -----
import os
import csv
from gradio import inputs, outputs
import huggingface_hub
from huggingface_hub import Repository, hf_hub_download, upload_file
from datetime import datetime

from typing import List, Dict
import httpx
import pandas as pd

# -------------------------------------------- For Memory - you will need to set up a dataset and HF_TOKEN ---------
UseMemory=True

if UseMemory:
   DATASET_REPO_URL="https://huggingface.co/datasets/awacke1/ChatbotMemory.csv"
   DATASET_REPO_ID="awacke1/ChatbotMemory.csv"
   DATA_FILENAME="ChatbotMemory.csv"
   DATA_FILE=os.path.join("data", DATA_FILENAME)
   HF_TOKEN=os.environ.get("HF_TOKEN")

if UseMemory: 
   try:
      hf_hub_download(
      repo_id=DATASET_REPO_ID,
      filename=DATA_FILENAME,
      cache_dir=DATA_DIRNAME,
      force_filename=DATA_FILENAME
      )
   except:
      print("file not found")
      repo = Repository(
      local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
      )

async def get_splits(dataset_name: str) -> Dict[str, List[Dict]]:
    URL = f"https://datasets-server.huggingface.co/splits?dataset={dataset_name}"
    async with httpx.AsyncClient() as session:
        response = await session.get(URL)
        return response.json()

async def get_valid_datasets() -> Dict[str, List[str]]:
    URL = f"https://datasets-server.huggingface.co/valid"
    async with httpx.AsyncClient() as session:
        response = await session.get(URL)
        datasets = response.json()["valid"]
        return gr.Dropdown.update(choices=datasets, value="kelm")
        # The one to watch: https://huggingface.co/rungalileo
        # rungalileo/medical_transcription_40

async def get_first_rows(dataset: str, config: str, split: str) -> Dict[str, Dict[str, List[Dict]]]:
    URL = f"https://datasets-server.huggingface.co/first-rows?dataset={dataset}&config={config}&split={split}"
    async with httpx.AsyncClient() as session:
        response = await session.get(URL)
        print(URL)
        gr.Markdown(URL)
        return response.json()

def get_df_from_rows(api_output):
    return pd.DataFrame([row["row"] for row in api_output["rows"]])

async def update_configs(dataset_name: str):
    splits = await get_splits(dataset_name)
    all_configs = sorted(set([s["config"] for s in splits["splits"]]))
    return (gr.Dropdown.update(choices=all_configs, value=all_configs[0]),
            splits)

async def update_splits(config_name: str, state: gr.State):
    splits_for_config = sorted(set([s["split"] for s in state["splits"] if s["config"] == config_name]))
    dataset_name = state["splits"][0]["dataset"]
    dataset = await update_dataset(splits_for_config[0], config_name, dataset_name)
    return (gr.Dropdown.update(choices=splits_for_config, value=splits_for_config[0]), dataset)

async def update_dataset(split_name: str, config_name: str, dataset_name: str):
    rows = await get_first_rows(dataset_name, config_name, split_name)
    df = get_df_from_rows(rows)
    return df

# Guido von Roissum: https://www.youtube.com/watch?v=-DVyjdw4t9I
async def update_URL(dataset: str, config: str, split: str) -> str:
    URL = f"https://datasets-server.huggingface.co/first-rows?dataset={dataset}&config={config}&split={split}"
    URL = f"https://huggingface.co/datasets/{split}"
    return (URL)
   
async def openurl(URL: str) -> str:
    html = f"<a href={URL} target=_blank>{URL}</a>"
    return (html)


def store_message(name: str, message: str):
    if name and message:
        with open(DATA_FILE, "a") as csvfile:
            writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ])
            writer.writerow(
                {"time": str(datetime.now()), "message": message.strip(), "name": name.strip()  }
            )
# uncomment line below to begin saving.  If creating your own copy you will need to add a access token called "HF_TOKEN" to your profile, then create a secret for your repo with the access code naming it "HF_TOKEN"  For the CSV as well you can copy the header and first few lines to your own then update the paths above which should work to save to your own repository for datasets.    
        commit_url = repo.push_to_hub()
    return ""

mname = "facebook/blenderbot-400M-distill"
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
tokenizer = BlenderbotTokenizer.from_pretrained(mname)


def take_last_tokens(inputs, note_history, history):
    """Filter the last 128 tokens"""
    if inputs['input_ids'].shape[1] > 128:
        inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
        inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
        note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
        history = history[1:]
    return inputs, note_history, history
    
def add_note_to_history(note, note_history):
    """Add a note to the historical information"""
    note_history.append(note)
    note_history = '</s> <s>'.join(note_history)
    return [note_history]


title = "💬ChatBack🧠💾"
description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. 
 Current Best SOTA Chatbot:  https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+ChatBack%21+Are+you+ready+to+rock%3F  """


def chat(message, history):
    history = history or []
    if history: 
        history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
    else:
        history_useful = []
    history_useful = add_note_to_history(message, history_useful)
    inputs = tokenizer(history_useful, return_tensors="pt")
    inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
    reply_ids = model.generate(**inputs)
    response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
    history_useful = add_note_to_history(response, history_useful)
    list_history = history_useful[0].split('</s> <s>')
    history.append((list_history[-2], list_history[-1]))
    
    store_message(message, response) # Save to dataset  -- uncomment with code above, create a dataset to store and add your HF_TOKEN from profile to this repo to use.
    
    return history, history


gr.Interface(
    fn=chat,
    theme="huggingface",
    css=".footer {display:none !important}",
    inputs=["text", "state"],
    outputs=["chatbot", "state"],
    title=title,
    allow_flagging="never",

    description=f"Gradio chatbot backed by memory in a dataset repository.",
    article=f"The memory dataset for saves is [{DATASET_REPO_URL}]({DATASET_REPO_URL}) 🦃Thanks!🦃 Check out HF Datasets: https://huggingface.co/spaces/awacke1/FreddysDatasetViewer  SOTA papers code and datasets on chat are here: https://paperswithcode.com/datasets?q=chat&v=lst&o=newest"

    ).launch(debug=True)