Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -10,14 +10,11 @@ import glob
|
|
10 |
from camera_input_live import camera_input_live
|
11 |
import face_recognition
|
12 |
|
13 |
-
# Set wide layout
|
14 |
st.set_page_config(layout="wide")
|
15 |
|
16 |
-
# Decorator for caching images
|
17 |
def get_image_count():
|
18 |
return {'count': 0}
|
19 |
|
20 |
-
# Function Definitions for Camera Feature
|
21 |
def save_image(image, image_count):
|
22 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
23 |
filename = f"captured_image_{timestamp}_{image_count['count']}.png"
|
@@ -31,7 +28,6 @@ def get_image_base64(image_path):
|
|
31 |
with open(image_path, "rb") as image_file:
|
32 |
return base64.b64encode(image_file.read()).decode()
|
33 |
|
34 |
-
# Function Definitions for Chord Sheet Feature
|
35 |
def process_line(line):
|
36 |
if re.search(r'\b[A-G][#b]?m?\b', line):
|
37 |
line = re.sub(r'\b([A-G][#b]?m?)\b', r"<img src='\1.png' style='height:20px;'>", line)
|
@@ -44,12 +40,9 @@ def process_sheet(sheet):
|
|
44 |
processed_lines.append(processed_line)
|
45 |
return '<br>'.join(processed_lines)
|
46 |
|
47 |
-
# Main Function
|
48 |
def main():
|
49 |
-
# Layout Configuration
|
50 |
col1, col2 = st.columns([2, 3])
|
51 |
|
52 |
-
# Camera Section
|
53 |
with col1:
|
54 |
st.markdown("✨ Magic Lens: Real-Time Camera Stream 🌈")
|
55 |
|
@@ -63,37 +56,29 @@ def main():
|
|
63 |
|
64 |
image = camera_input_live()
|
65 |
if image is not None:
|
66 |
-
|
67 |
-
rgb_image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
|
68 |
|
69 |
-
# Detect faces in the image
|
70 |
face_locations = face_recognition.face_locations(rgb_image)
|
71 |
face_encodings = face_recognition.face_encodings(rgb_image, face_locations)
|
72 |
|
73 |
-
# Check if the known face image exists
|
74 |
if os.path.isfile("known_face.jpg"):
|
75 |
known_image = face_recognition.load_image_file("known_face.jpg")
|
76 |
known_encoding = face_recognition.face_encodings(known_image)[0]
|
77 |
else:
|
78 |
known_encoding = None
|
79 |
|
80 |
-
# Iterate over detected faces and compare with known face
|
81 |
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
|
82 |
if known_encoding is not None:
|
83 |
matches = face_recognition.compare_faces([known_encoding], face_encoding)
|
84 |
|
85 |
if True in matches:
|
86 |
-
# If a match is found, draw a green rectangle and label
|
87 |
cv2.rectangle(rgb_image, (left, top), (right, bottom), (0, 255, 0), 2)
|
88 |
cv2.putText(rgb_image, "Known Face", (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
89 |
else:
|
90 |
-
# If no match, draw a red rectangle
|
91 |
cv2.rectangle(rgb_image, (left, top), (right, bottom), (0, 0, 255), 2)
|
92 |
else:
|
93 |
-
# If no known face is registered, draw a blue rectangle
|
94 |
cv2.rectangle(rgb_image, (left, top), (right, bottom), (255, 0, 0), 2)
|
95 |
|
96 |
-
# Convert the RGB image back to BGR format for display
|
97 |
bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
|
98 |
image_placeholder.image(bgr_image, channels="BGR")
|
99 |
|
@@ -116,10 +101,8 @@ def main():
|
|
116 |
st.sidebar.markdown("## Captured Images")
|
117 |
st.sidebar.markdown(sidebar_html, unsafe_allow_html=True)
|
118 |
|
119 |
-
# JavaScript Timer
|
120 |
st.markdown(f"<script>setInterval(function() {{ document.getElementById('timer').innerHTML = new Date().toLocaleTimeString(); }}, 1000);</script><div>Current Time: <span id='timer'></span></div>", unsafe_allow_html=True)
|
121 |
|
122 |
-
# Chord Sheet Section
|
123 |
with col2:
|
124 |
st.markdown("## 🎬 Action! Real-Time Camera Stream Highlights 📽️")
|
125 |
|
@@ -131,7 +114,6 @@ def main():
|
|
131 |
sheet = file.read()
|
132 |
st.markdown(process_sheet(sheet), unsafe_allow_html=True)
|
133 |
|
134 |
-
# Trigger a rerun only when the snapshot interval is reached
|
135 |
if 'last_captured' in st.session_state and time.time() - st.session_state['last_captured'] > snapshot_interval:
|
136 |
st.experimental_rerun()
|
137 |
|
|
|
10 |
from camera_input_live import camera_input_live
|
11 |
import face_recognition
|
12 |
|
|
|
13 |
st.set_page_config(layout="wide")
|
14 |
|
|
|
15 |
def get_image_count():
|
16 |
return {'count': 0}
|
17 |
|
|
|
18 |
def save_image(image, image_count):
|
19 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
20 |
filename = f"captured_image_{timestamp}_{image_count['count']}.png"
|
|
|
28 |
with open(image_path, "rb") as image_file:
|
29 |
return base64.b64encode(image_file.read()).decode()
|
30 |
|
|
|
31 |
def process_line(line):
|
32 |
if re.search(r'\b[A-G][#b]?m?\b', line):
|
33 |
line = re.sub(r'\b([A-G][#b]?m?)\b', r"<img src='\1.png' style='height:20px;'>", line)
|
|
|
40 |
processed_lines.append(processed_line)
|
41 |
return '<br>'.join(processed_lines)
|
42 |
|
|
|
43 |
def main():
|
|
|
44 |
col1, col2 = st.columns([2, 3])
|
45 |
|
|
|
46 |
with col1:
|
47 |
st.markdown("✨ Magic Lens: Real-Time Camera Stream 🌈")
|
48 |
|
|
|
56 |
|
57 |
image = camera_input_live()
|
58 |
if image is not None:
|
59 |
+
rgb_image = cv2.cvtColor(cv2.imdecode(np.frombuffer(image.getvalue(), np.uint8), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
|
|
|
60 |
|
|
|
61 |
face_locations = face_recognition.face_locations(rgb_image)
|
62 |
face_encodings = face_recognition.face_encodings(rgb_image, face_locations)
|
63 |
|
|
|
64 |
if os.path.isfile("known_face.jpg"):
|
65 |
known_image = face_recognition.load_image_file("known_face.jpg")
|
66 |
known_encoding = face_recognition.face_encodings(known_image)[0]
|
67 |
else:
|
68 |
known_encoding = None
|
69 |
|
|
|
70 |
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
|
71 |
if known_encoding is not None:
|
72 |
matches = face_recognition.compare_faces([known_encoding], face_encoding)
|
73 |
|
74 |
if True in matches:
|
|
|
75 |
cv2.rectangle(rgb_image, (left, top), (right, bottom), (0, 255, 0), 2)
|
76 |
cv2.putText(rgb_image, "Known Face", (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
77 |
else:
|
|
|
78 |
cv2.rectangle(rgb_image, (left, top), (right, bottom), (0, 0, 255), 2)
|
79 |
else:
|
|
|
80 |
cv2.rectangle(rgb_image, (left, top), (right, bottom), (255, 0, 0), 2)
|
81 |
|
|
|
82 |
bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
|
83 |
image_placeholder.image(bgr_image, channels="BGR")
|
84 |
|
|
|
101 |
st.sidebar.markdown("## Captured Images")
|
102 |
st.sidebar.markdown(sidebar_html, unsafe_allow_html=True)
|
103 |
|
|
|
104 |
st.markdown(f"<script>setInterval(function() {{ document.getElementById('timer').innerHTML = new Date().toLocaleTimeString(); }}, 1000);</script><div>Current Time: <span id='timer'></span></div>", unsafe_allow_html=True)
|
105 |
|
|
|
106 |
with col2:
|
107 |
st.markdown("## 🎬 Action! Real-Time Camera Stream Highlights 📽️")
|
108 |
|
|
|
114 |
sheet = file.read()
|
115 |
st.markdown(process_sheet(sheet), unsafe_allow_html=True)
|
116 |
|
|
|
117 |
if 'last_captured' in st.session_state and time.time() - st.session_state['last_captured'] > snapshot_interval:
|
118 |
st.experimental_rerun()
|
119 |
|