awacke1 commited on
Commit
256841d
·
1 Parent(s): 59f73f8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -192
app.py CHANGED
@@ -3,143 +3,11 @@ import os
3
  import json
4
  import requests
5
 
6
-
7
- #Chatbot2
8
- from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
9
- import torch
10
- from datasets import load_dataset
11
- # PersistDataset -----
12
- import os
13
- import csv
14
- from gradio import inputs, outputs
15
- import huggingface_hub
16
- #from huggingface_hub import Repository, hub_download, upload_file
17
- from datetime import datetime
18
- import fastapi
19
- from typing import List, Dict
20
- import httpx
21
- import pandas as pd
22
- import datasets as ds
23
-
24
- #Chatbot2 constants
25
- title = """<h1 align="center">💬ChatGPT ChatBack🧠💾</h1>"""
26
- #description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. """
27
- UseMemory=True
28
-
29
- #ChatGPT info
30
  API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
31
  OPENAI_API_KEY= os.environ["HF_TOKEN"] # Add a token to this space . Then copy it to the repository secret in this spaces settings panel. os.environ reads from there.
32
  # Keys for Open AI ChatGPT API usage are created from here: https://platform.openai.com/account/api-keys
33
- description = """
34
-
35
- Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions.
36
-
37
-
38
- ## ChatGPT Datasets 📚
39
- - WebText
40
- - Common Crawl
41
- - BooksCorpus
42
- - English Wikipedia
43
- - Toronto Books Corpus
44
- - OpenWebText
45
-
46
- ## ChatGPT Datasets - Details 📚
47
- - **WebText:** A dataset of web pages crawled from domains on the Alexa top 5,000 list. This dataset was used to pretrain GPT-2.
48
- - [WebText: A Large-Scale Unsupervised Text Corpus by Radford et al.](https://paperswithcode.com/dataset/webtext)
49
- - **Common Crawl:** A dataset of web pages from a variety of domains, which is updated regularly. This dataset was used to pretrain GPT-3.
50
- - [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/common-crawl) by Brown et al.
51
- - **BooksCorpus:** A dataset of over 11,000 books from a variety of genres.
52
- - [Scalable Methods for 8 Billion Token Language Modeling](https://paperswithcode.com/dataset/bookcorpus) by Zhu et al.
53
- - **English Wikipedia:** A dump of the English-language Wikipedia as of 2018, with articles from 2001-2017.
54
- - [Improving Language Understanding by Generative Pre-Training](https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch?logs=build) Space for Wikipedia Search
55
- - **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
56
- - [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
57
- - **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
58
- - [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
59
- """
60
-
61
 
62
- #Chatbot2 Save Results
63
- def SaveResult(text, outputfileName):
64
- basedir = os.path.dirname(__file__)
65
- savePath = outputfileName
66
- print("Saving: " + text + " to " + savePath)
67
- from os.path import exists
68
- file_exists = exists(savePath)
69
- if file_exists:
70
- with open(outputfileName, "a") as f: #append
71
- f.write(str(text.replace("\n"," ")))
72
- f.write('\n')
73
- else:
74
- with open(outputfileName, "w") as f: #write
75
- f.write(str("time, message, text\n")) # one time only to get column headers for CSV file
76
- f.write(str(text.replace("\n"," ")))
77
- f.write('\n')
78
- return
79
-
80
- #Chatbot2 Store Message
81
- def store_message(name: str, message: str, outputfileName: str):
82
- basedir = os.path.dirname(__file__)
83
- savePath = outputfileName
84
-
85
- # if file doesnt exist, create it with labels
86
- from os.path import exists
87
- file_exists = exists(savePath)
88
-
89
- if (file_exists==False):
90
- with open(savePath, "w") as f: #write
91
- f.write(str("time, message, text\n")) # one time only to get column headers for CSV file
92
- if name and message:
93
- writer = csv.DictWriter(f, fieldnames=["time", "message", "name"])
94
- writer.writerow(
95
- {"time": str(datetime.now()), "message": message.strip(), "name": name.strip() }
96
- )
97
- df = pd.read_csv(savePath)
98
- df = df.sort_values(df.columns[0],ascending=False)
99
- else:
100
- if name and message:
101
- with open(savePath, "a") as csvfile:
102
- writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ])
103
- writer.writerow(
104
- {"time": str(datetime.now()), "message": message.strip(), "name": name.strip() }
105
- )
106
- df = pd.read_csv(savePath)
107
- df = df.sort_values(df.columns[0],ascending=False)
108
- return df
109
-
110
- #Chatbot2 get base directory of saves
111
- def get_base(filename):
112
- basedir = os.path.dirname(__file__)
113
- print(basedir)
114
- loadPath = basedir + filename
115
- print(loadPath)
116
- return loadPath
117
-
118
- #Chatbot2 - History
119
- def chat(message, history):
120
- history = history or []
121
- if history:
122
- history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
123
- else:
124
- history_useful = []
125
- history_useful = add_note_to_history(message, history_useful)
126
- inputs = tokenizer(history_useful, return_tensors="pt")
127
- inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
128
- reply_ids = model.generate(**inputs)
129
- response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
130
- history_useful = add_note_to_history(response, history_useful)
131
- list_history = history_useful[0].split('</s> <s>')
132
- history.append((list_history[-2], list_history[-1]))
133
- df=pd.DataFrame()
134
- if UseMemory:
135
- outputfileName = 'ChatbotMemory3.csv' # Test first time file create
136
- df = store_message(message, response, outputfileName) # Save to dataset
137
- basedir = get_base(outputfileName)
138
- return history, df, basedir
139
-
140
-
141
-
142
- #ChatGPT predict
143
  def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]): #repetition_penalty, top_k
144
 
145
  # 1. Set up a payload
@@ -203,17 +71,18 @@ def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
203
  # TODO - make this parse out markdown so we can have similar interface
204
  counter=0
205
  for chunk in response.iter_lines():
206
-
207
  if counter == 0:
208
  counter+=1
209
  continue
210
-
 
211
  if chunk.decode() :
212
-
213
- chunk = chunk.decode()
214
-
215
- if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
216
-
217
  partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
218
  if token_counter == 0:
219
  history.append(" " + partial_words)
@@ -221,61 +90,50 @@ def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
221
  history[-1] = partial_words
222
  chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
223
  token_counter+=1
224
-
225
-
226
-
227
- df=pd.DataFrame()
228
- if UseMemory:
229
- outputfileName = 'ChatGPT-RLHF-Memory.csv' # Test first time file create
230
- df = store_message(chat, history, outputfileName) # Save to dataset
231
- basedir = get_base(outputfileName)
232
- #return history, df, basedir
233
-
234
-
235
-
236
  yield chat, history, chat_counter # resembles {chatbot: chat, state: history}
 
237
 
238
- def take_last_tokens(inputs, note_history, history):
239
- if inputs['input_ids'].shape[1] > 128:
240
- inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
241
- inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
242
- note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
243
- history = history[1:]
244
- return inputs, note_history, history
245
-
246
- def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay.
247
- note_history.append(note)
248
- note_history = '</s> <s>'.join(note_history)
249
- return [note_history]
250
-
251
- # ChatGPT clear
252
  def reset_textbox():
253
  return gr.update(value='')
254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255
  # 6. Use Gradio to pull it all together
256
- with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""") as demo:
257
-
258
- gr.HTML(title)
259
 
260
- # Chat bot memory - dataframe
261
- gr.Markdown("<h1><center>🍰Gradio chatbot backed by dataframe CSV memory🎨</center></h1>")
262
- with gr.Row():
263
- t1 = gr.Textbox(lines=1, default="", label="Chat Text:")
264
- b1 = gr.Button("🍰 Respond and Retrieve Messages")
265
- with gr.Row(): # inputs and buttons
266
- s1 = gr.State([])
267
- df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate")
268
- with gr.Row(): # inputs and buttons
269
- file = gr.File(label="File")
270
- s2 = gr.Markdown()
271
- #b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1, file])
272
 
273
 
274
  with gr.Column(elem_id = "col_container"):
275
- chatbot = gr.Chatbot(elem_id='chatbot')
276
- inputs = gr.Textbox(placeholder= "There is only one real true reward in life and this is existence versus nonexistence. Everything else is a corollary.", label= "Type an input and press Enter") #t
277
- state = gr.State([])
278
- gpt = gr.Button()
279
 
280
  with gr.Accordion("Parameters", open=False):
281
  top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
@@ -283,13 +141,9 @@ with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin
283
  chat_counter = gr.Number(value=0, visible=False, precision=0)
284
 
285
  inputs.submit( predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter],)
286
-
287
- gpt.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
288
- gpt.click(reset_textbox, [], [inputs])
289
  inputs.submit(reset_textbox, [], [inputs])
290
-
291
- # Show ChatGPT Datasets information
292
  gr.Markdown(description)
293
-
294
- # Kickoff
295
  demo.queue().launch(debug=True)
 
3
  import json
4
  import requests
5
 
6
+ #Streaming endpoint
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
8
  OPENAI_API_KEY= os.environ["HF_TOKEN"] # Add a token to this space . Then copy it to the repository secret in this spaces settings panel. os.environ reads from there.
9
  # Keys for Open AI ChatGPT API usage are created from here: https://platform.openai.com/account/api-keys
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]): #repetition_penalty, top_k
12
 
13
  # 1. Set up a payload
 
71
  # TODO - make this parse out markdown so we can have similar interface
72
  counter=0
73
  for chunk in response.iter_lines():
74
+ #Skipping first chunk
75
  if counter == 0:
76
  counter+=1
77
  continue
78
+ #counter+=1
79
+ # check whether each line is non-empty
80
  if chunk.decode() :
81
+ chunk = chunk.decode()
82
+ # decode each line as response data is in bytes
83
+ if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
84
+ #if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
85
+ # break
86
  partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
87
  if token_counter == 0:
88
  history.append(" " + partial_words)
 
90
  history[-1] = partial_words
91
  chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
92
  token_counter+=1
 
 
 
 
 
 
 
 
 
 
 
 
93
  yield chat, history, chat_counter # resembles {chatbot: chat, state: history}
94
+
95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  def reset_textbox():
97
  return gr.update(value='')
98
 
99
+ title = """<h1 align="center">Memory Chat Story Generator ChatGPT</h1>"""
100
+ description = """
101
+ ## ChatGPT Datasets 📚
102
+ - WebText
103
+ - Common Crawl
104
+ - BooksCorpus
105
+ - English Wikipedia
106
+ - Toronto Books Corpus
107
+ - OpenWebText
108
+ ## ChatGPT Datasets - Details 📚
109
+ - **WebText:** A dataset of web pages crawled from domains on the Alexa top 5,000 list. This dataset was used to pretrain GPT-2.
110
+ - [WebText: A Large-Scale Unsupervised Text Corpus by Radford et al.](https://paperswithcode.com/dataset/webtext)
111
+ - **Common Crawl:** A dataset of web pages from a variety of domains, which is updated regularly. This dataset was used to pretrain GPT-3.
112
+ - [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/common-crawl) by Brown et al.
113
+ - **BooksCorpus:** A dataset of over 11,000 books from a variety of genres.
114
+ - [Scalable Methods for 8 Billion Token Language Modeling](https://paperswithcode.com/dataset/bookcorpus) by Zhu et al.
115
+ - **English Wikipedia:** A dump of the English-language Wikipedia as of 2018, with articles from 2001-2017.
116
+ - [Improving Language Understanding by Generative Pre-Training](https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch?logs=build) Space for Wikipedia Search
117
+ - **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
118
+ - [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
119
+ - **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
120
+ - [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
121
+
122
+ """
123
+
124
  # 6. Use Gradio to pull it all together
125
+ with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
126
+ #chatbot {height: 520px; overflow: auto;}""") as demo:
 
127
 
128
+
129
+ gr.HTML(title)
 
 
 
 
 
 
 
 
 
 
130
 
131
 
132
  with gr.Column(elem_id = "col_container"):
133
+ chatbot = gr.Chatbot(elem_id='chatbot') #c
134
+ inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t
135
+ state = gr.State([]) #s
136
+ b1 = gr.Button()
137
 
138
  with gr.Accordion("Parameters", open=False):
139
  top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
 
141
  chat_counter = gr.Number(value=0, visible=False, precision=0)
142
 
143
  inputs.submit( predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter],)
144
+ b1.click( predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
145
+ b1.click(reset_textbox, [], [inputs])
 
146
  inputs.submit(reset_textbox, [], [inputs])
147
+
 
148
  gr.Markdown(description)
 
 
149
  demo.queue().launch(debug=True)