Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,63 @@ import os
|
|
3 |
import json
|
4 |
import requests
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
|
8 |
OPENAI_API_KEY= os.environ["HF_TOKEN"] # Add a token to this space . Then copy it to the repository secret in this spaces settings panel. os.environ reads from there.
|
9 |
# Keys for Open AI ChatGPT API usage are created from here: https://platform.openai.com/account/api-keys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]): #repetition_penalty, top_k
|
12 |
|
13 |
# 1. Set up a payload
|
@@ -91,51 +143,127 @@ def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
|
|
91 |
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
|
92 |
token_counter+=1
|
93 |
yield chat, history, chat_counter # resembles {chatbot: chat, state: history}
|
94 |
-
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
def reset_textbox():
|
97 |
return gr.update(value='')
|
98 |
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
- **English Wikipedia:** A dump of the English-language Wikipedia as of 2018, with articles from 2001-2017.
|
118 |
-
- [Improving Language Understanding by Generative Pre-Training](https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch?logs=build) Space for Wikipedia Search
|
119 |
-
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
|
120 |
-
- [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
|
121 |
-
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
|
122 |
-
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
|
123 |
-
|
124 |
-
"""
|
125 |
|
126 |
-
#
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
|
|
|
|
|
|
|
131 |
gr.HTML(title)
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
with gr.Column(elem_id = "col_container"):
|
135 |
-
chatbot = gr.Chatbot(elem_id='chatbot')
|
136 |
-
inputs = gr.Textbox(placeholder= "
|
137 |
-
state = gr.State([])
|
138 |
-
|
139 |
|
140 |
with gr.Accordion("Parameters", open=False):
|
141 |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
|
@@ -143,9 +271,13 @@ with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin
|
|
143 |
chat_counter = gr.Number(value=0, visible=False, precision=0)
|
144 |
|
145 |
inputs.submit( predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter],)
|
146 |
-
b1.click( predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
|
147 |
-
b1.click(reset_textbox, [], [inputs])
|
148 |
-
inputs.submit(reset_textbox, [], [inputs])
|
149 |
|
|
|
|
|
|
|
|
|
|
|
150 |
gr.Markdown(description)
|
|
|
|
|
151 |
demo.queue().launch(debug=True)
|
|
|
3 |
import json
|
4 |
import requests
|
5 |
|
6 |
+
|
7 |
+
#Chatbot2
|
8 |
+
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
|
9 |
+
import torch
|
10 |
+
from datasets import load_dataset
|
11 |
+
# PersistDataset -----
|
12 |
+
import os
|
13 |
+
import csv
|
14 |
+
from gradio import inputs, outputs
|
15 |
+
import huggingface_hub
|
16 |
+
from huggingface_hub import Repository, hf_hub_download, upload_file
|
17 |
+
from datetime import datetime
|
18 |
+
import fastapi
|
19 |
+
from typing import List, Dict
|
20 |
+
import httpx
|
21 |
+
import pandas as pd
|
22 |
+
import datasets as ds
|
23 |
+
|
24 |
+
#Chatbot2 constants
|
25 |
+
title = """<h1 align="center">💬ChatGPT ChatBack🧠💾</h1>"""
|
26 |
+
#description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. """
|
27 |
+
UseMemory=True
|
28 |
+
HF_TOKEN=os.environ.get("HF_TOKEN")
|
29 |
+
|
30 |
+
#ChatGPT info
|
31 |
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
|
32 |
OPENAI_API_KEY= os.environ["HF_TOKEN"] # Add a token to this space . Then copy it to the repository secret in this spaces settings panel. os.environ reads from there.
|
33 |
# Keys for Open AI ChatGPT API usage are created from here: https://platform.openai.com/account/api-keys
|
34 |
+
description = """
|
35 |
+
|
36 |
+
Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions.
|
37 |
+
|
38 |
+
|
39 |
+
## ChatGPT Datasets 📚
|
40 |
+
- WebText
|
41 |
+
- Common Crawl
|
42 |
+
- BooksCorpus
|
43 |
+
- English Wikipedia
|
44 |
+
- Toronto Books Corpus
|
45 |
+
- OpenWebText
|
46 |
+
|
47 |
+
## ChatGPT Datasets - Details 📚
|
48 |
+
- **WebText:** A dataset of web pages crawled from domains on the Alexa top 5,000 list. This dataset was used to pretrain GPT-2.
|
49 |
+
- [WebText: A Large-Scale Unsupervised Text Corpus by Radford et al.](https://paperswithcode.com/dataset/webtext)
|
50 |
+
- **Common Crawl:** A dataset of web pages from a variety of domains, which is updated regularly. This dataset was used to pretrain GPT-3.
|
51 |
+
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/common-crawl) by Brown et al.
|
52 |
+
- **BooksCorpus:** A dataset of over 11,000 books from a variety of genres.
|
53 |
+
- [Scalable Methods for 8 Billion Token Language Modeling](https://paperswithcode.com/dataset/bookcorpus) by Zhu et al.
|
54 |
+
- **English Wikipedia:** A dump of the English-language Wikipedia as of 2018, with articles from 2001-2017.
|
55 |
+
- [Improving Language Understanding by Generative Pre-Training](https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch?logs=build) Space for Wikipedia Search
|
56 |
+
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
|
57 |
+
- [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
|
58 |
+
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
|
59 |
+
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
|
60 |
+
"""
|
61 |
|
62 |
+
#ChatGPT predict
|
63 |
def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]): #repetition_penalty, top_k
|
64 |
|
65 |
# 1. Set up a payload
|
|
|
143 |
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
|
144 |
token_counter+=1
|
145 |
yield chat, history, chat_counter # resembles {chatbot: chat, state: history}
|
|
|
146 |
|
147 |
+
def take_last_tokens(inputs, note_history, history):
|
148 |
+
if inputs['input_ids'].shape[1] > 128:
|
149 |
+
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
|
150 |
+
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
|
151 |
+
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
|
152 |
+
history = history[1:]
|
153 |
+
return inputs, note_history, history
|
154 |
+
|
155 |
+
def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay.
|
156 |
+
note_history.append(note)
|
157 |
+
note_history = '</s> <s>'.join(note_history)
|
158 |
+
return [note_history]
|
159 |
+
|
160 |
+
# ChatGPT clear
|
161 |
def reset_textbox():
|
162 |
return gr.update(value='')
|
163 |
|
164 |
+
#Chatbot2 Save Results
|
165 |
+
def SaveResult(text, outputfileName):
|
166 |
+
basedir = os.path.dirname(__file__)
|
167 |
+
savePath = outputfileName
|
168 |
+
print("Saving: " + text + " to " + savePath)
|
169 |
+
from os.path import exists
|
170 |
+
file_exists = exists(savePath)
|
171 |
+
if file_exists:
|
172 |
+
with open(outputfileName, "a") as f: #append
|
173 |
+
f.write(str(text.replace("\n"," ")))
|
174 |
+
f.write('\n')
|
175 |
+
else:
|
176 |
+
with open(outputfileName, "w") as f: #write
|
177 |
+
f.write(str("time, message, text\n")) # one time only to get column headers for CSV file
|
178 |
+
f.write(str(text.replace("\n"," ")))
|
179 |
+
f.write('\n')
|
180 |
+
return
|
181 |
|
182 |
+
#Chatbot2 Store Message
|
183 |
+
def store_message(name: str, message: str, outputfileName: str):
|
184 |
+
basedir = os.path.dirname(__file__)
|
185 |
+
savePath = outputfileName
|
186 |
+
|
187 |
+
# if file doesnt exist, create it with labels
|
188 |
+
from os.path import exists
|
189 |
+
file_exists = exists(savePath)
|
190 |
+
|
191 |
+
if (file_exists==False):
|
192 |
+
with open(savePath, "w") as f: #write
|
193 |
+
f.write(str("time, message, text\n")) # one time only to get column headers for CSV file
|
194 |
+
if name and message:
|
195 |
+
writer = csv.DictWriter(f, fieldnames=["time", "message", "name"])
|
196 |
+
writer.writerow(
|
197 |
+
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip() }
|
198 |
+
)
|
199 |
+
df = pd.read_csv(savePath)
|
200 |
+
df = df.sort_values(df.columns[0],ascending=False)
|
201 |
+
else:
|
202 |
+
if name and message:
|
203 |
+
with open(savePath, "a") as csvfile:
|
204 |
+
writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ])
|
205 |
+
writer.writerow(
|
206 |
+
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip() }
|
207 |
+
)
|
208 |
+
df = pd.read_csv(savePath)
|
209 |
+
df = df.sort_values(df.columns[0],ascending=False)
|
210 |
+
return df
|
211 |
|
212 |
+
#Chatbot2 get base directory of saves
|
213 |
+
def get_base(filename):
|
214 |
+
basedir = os.path.dirname(__file__)
|
215 |
+
print(basedir)
|
216 |
+
loadPath = basedir + filename
|
217 |
+
print(loadPath)
|
218 |
+
return loadPath
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
+
#Chatbot2 - History
|
221 |
+
def chat(message, history):
|
222 |
+
history = history or []
|
223 |
+
if history:
|
224 |
+
history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
|
225 |
+
else:
|
226 |
+
history_useful = []
|
227 |
+
history_useful = add_note_to_history(message, history_useful)
|
228 |
+
inputs = tokenizer(history_useful, return_tensors="pt")
|
229 |
+
inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
|
230 |
+
reply_ids = model.generate(**inputs)
|
231 |
+
response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
|
232 |
+
history_useful = add_note_to_history(response, history_useful)
|
233 |
+
list_history = history_useful[0].split('</s> <s>')
|
234 |
+
history.append((list_history[-2], list_history[-1]))
|
235 |
+
df=pd.DataFrame()
|
236 |
+
if UseMemory:
|
237 |
+
outputfileName = 'ChatbotMemory3.csv' # Test first time file create
|
238 |
+
df = store_message(message, response, outputfileName) # Save to dataset
|
239 |
+
basedir = get_base(outputfileName)
|
240 |
+
return history, df, basedir
|
241 |
|
242 |
+
|
243 |
+
# 6. Use Gradio to pull it all together
|
244 |
+
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""") as demo:
|
245 |
+
|
246 |
gr.HTML(title)
|
247 |
|
248 |
+
# Chat bot memory - dataframe
|
249 |
+
gr.Markdown("<h1><center>🍰Gradio chatbot backed by dataframe CSV memory🎨</center></h1>")
|
250 |
+
with gr.Row():
|
251 |
+
t1 = gr.Textbox(lines=1, default="", label="Chat Text:")
|
252 |
+
b1 = gr.Button("🍰 Respond and Retrieve Messages")
|
253 |
+
with gr.Row(): # inputs and buttons
|
254 |
+
s1 = gr.State([])
|
255 |
+
df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate")
|
256 |
+
with gr.Row(): # inputs and buttons
|
257 |
+
file = gr.File(label="File")
|
258 |
+
s2 = gr.Markdown()
|
259 |
+
b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1, file])
|
260 |
+
|
261 |
|
262 |
with gr.Column(elem_id = "col_container"):
|
263 |
+
chatbot = gr.Chatbot(elem_id='chatbot')
|
264 |
+
inputs = gr.Textbox(placeholder= "There is only one real true reward in life and this is existence or nonexistence. Everything else is a corollary.", label= "Type an input and press Enter") #t
|
265 |
+
state = gr.State([])
|
266 |
+
gpt = gr.Button()
|
267 |
|
268 |
with gr.Accordion("Parameters", open=False):
|
269 |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
|
|
|
271 |
chat_counter = gr.Number(value=0, visible=False, precision=0)
|
272 |
|
273 |
inputs.submit( predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter],)
|
|
|
|
|
|
|
274 |
|
275 |
+
gpt.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
|
276 |
+
gpt.click(reset_textbox, [], [inputs])
|
277 |
+
inputs.submit(reset_textbox, [], [inputs])
|
278 |
+
|
279 |
+
# Show ChatGPT Datasets information
|
280 |
gr.Markdown(description)
|
281 |
+
|
282 |
+
# Kickoff
|
283 |
demo.queue().launch(debug=True)
|