awacke1's picture
Update app.py
9174061 verified
raw
history blame
13.4 kB
import base64
import cv2
import glob
import json
import math
import os
import pytz
import random
import re
import requests
import streamlit as st
import streamlit.components.v1 as components
import textract
import time
import zipfile
import uuid
import platform
import extra_streamlit_components as stx
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from datetime import datetime
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from moviepy.editor import VideoFileClip
from PIL import Image
from PyPDF2 import PdfReader
from templates import bot_template, css, user_template
from urllib.parse import quote
from xml.etree import ElementTree as ET
import openai
from openai import OpenAI
# Load environment variables
load_dotenv()
# Configuration
Site_Name = 'Scholarly-Article-Document-Search-With-Memory'
title = "🔬🧠ScienceBrain.AI"
helpURL = 'https://huggingface.co/awacke1'
bugURL = 'https://huggingface.co/spaces/awacke1'
icons = '🔬'
st.set_page_config(
page_title=title,
page_icon=icons,
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': helpURL,
'Report a bug': bugURL,
'About': title
}
)
# Initialize cookie manager
cookie_manager = stx.CookieManager()
# File to store chat history and user data
CHAT_FILE = "chat_history.txt"
# API configurations
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud'
API_KEY = st.secrets['API_KEY']
MODEL1 = "meta-llama/Llama-2-7b-chat-hf"
MODEL1URL = "https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
HF_KEY = st.secrets['HF_KEY']
headers = {
"Authorization": f"Bearer {HF_KEY}",
"Content-Type": "application/json"
}
# OpenAI client setup
client = OpenAI(api_key=st.secrets['OPENAI_API_KEY'], organization=st.secrets['OPENAI_ORG_ID'])
MODEL = "gpt-4-1106-preview"
# Session state initialization
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = MODEL
if "messages" not in st.session_state:
st.session_state.messages = []
if "users" not in st.session_state:
st.session_state.users = []
if "current_user" not in st.session_state:
st.session_state.current_user = get_or_create_user()
# Sidebar configurations
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
if st.sidebar.button("Clear Session"):
st.session_state.messages = []
# Function to save chat history and user data to file
def save_data():
with open(CHAT_FILE, 'w') as f:
json.dump({
'messages': st.session_state.messages,
'users': st.session_state.users
}, f)
# Function to load chat history and user data from file
def load_data():
try:
with open(CHAT_FILE, 'r') as f:
data = json.load(f)
st.session_state.messages = data['messages']
st.session_state.users = data['users']
except FileNotFoundError:
st.session_state.messages = []
st.session_state.users = []
# Load data at the start
if 'data_loaded' not in st.session_state:
load_data()
st.session_state.data_loaded = True
# Function to get or create user
def get_or_create_user():
user_id = cookie_manager.get(cookie='user_id')
if not user_id:
user_id = str(uuid.uuid4())
cookie_manager.set('user_id', user_id)
user = next((u for u in st.session_state.users if u['id'] == user_id), None)
if not user:
user = {
'id': user_id,
'name': random.choice(['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Henry']),
'browser': f"{platform.system()} - {st.session_state.get('browser_info', 'Unknown')}"
}
st.session_state.users.append(user)
save_data()
return user
# HTML5 based Speech Synthesis (Text to Speech in Browser)
@st.cache_resource
def SpeechSynthesis(result):
documentHTML5 = f"""
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {{
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}}
</script>
</head>
<body>
<h1>🔊 Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">{result}</textarea>
<br>
<button onclick="readAloud()">🔊 Read Aloud</button>
</body>
</html>
"""
components.html(documentHTML5, width=1280, height=300)
# Function to generate filename
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:240]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# Function to process text
def process_text(text_input):
if text_input:
st.session_state.messages.append({"role": "user", "content": text_input})
with st.chat_message("user"):
st.markdown(text_input)
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
for response in client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
):
full_response += (response.choices[0].delta.content or "")
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
filename = generate_filename(text_input, "md")
create_file(filename, text_input, full_response, should_save)
return full_response
# Function to create file
def create_file(filename, prompt, response, should_save=True):
if should_save:
with open(filename, "w", encoding="utf-8") as f:
f.write(prompt + "\n\n" + response)
# ArXiv search function
def search_arxiv(query):
base_url = "http://export.arxiv.org/api/query?"
search_query = f"search_query=all:{quote(query)}&start=0&max_results=5"
response = requests.get(base_url + search_query)
if response.status_code == 200:
results = []
for entry in response.text.split('<entry>')[1:]:
title = entry.split('<title>')[1].split('</title>')[0]
summary = entry.split('<summary>')[1].split('</summary>')[0]
link = entry.split('<id>')[1].split('</id>')[0]
results.append(f"Title: {title}\nSummary: {summary}\nLink: {link}\n")
return "\n".join(results)
else:
return "Error fetching results from ArXiv."
# Sidebar for user information and settings
with st.sidebar:
st.title("User Info")
st.write(f"Current User: {st.session_state.current_user['name']}")
st.write(f"Browser: {st.session_state.current_user['browser']}")
new_name = st.text_input("Change your name:")
if st.button("Update Name"):
if new_name:
for user in st.session_state.users:
if user['id'] == st.session_state.current_user['id']:
user['name'] = new_name
st.session_state.current_user['name'] = new_name
save_data()
st.success(f"Name updated to {new_name}")
st.rerun()
st.title("Active Users")
for user in st.session_state.users:
st.write(f"{user['name']} ({user['browser']})")
# Main chat area
st.title("Personalized Real-Time Chat with ArXiv Search and AI")
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("What would you like to know?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Check if it's an ArXiv search query
if prompt.lower().startswith("arxiv:"):
query = prompt[6:].strip()
with st.chat_message("assistant"):
with st.spinner("Searching ArXiv..."):
search_results = search_arxiv(query)
st.markdown(f"Search results for '{query}':\n\n{search_results}")
# Get AI commentary on the search results
ai_commentary = process_text(f"Provide a brief analysis of these ArXiv search results: {search_results}")
st.markdown(f"\nAI Analysis:\n{ai_commentary}")
st.session_state.messages.append({"role": "assistant", "content": f"Search results for '{query}':\n\n{search_results}\n\nAI Analysis:\n{ai_commentary}"})
else:
# Regular chat processing
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
for response in client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
):
full_response += (response.choices[0].delta.content or "")
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
save_data()
st.rerun()
# Polling for updates
if st.button("Refresh Chat"):
st.rerun()
# Auto-refresh
if 'last_refresh' not in st.session_state:
st.session_state.last_refresh = time.time()
if time.time() - st.session_state.last_refresh > 5: # Refresh every 5 seconds
st.session_state.last_refresh = time.time()
st.rerun()
# Main function to handle different input types
def main():
st.markdown("##### GPT-4 Multimodal AI Assistant: Text, Audio, Image, & Video")
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
if option == "Text":
text_input = st.text_input("Enter your text:")
if text_input:
process_text(text_input)
elif option == "Image":
text = "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."
text_input = st.text_input(label="Enter text prompt to use with Image context.", value=text)
image_input = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
if image_input:
image = Image.open(image_input)
st.image(image, caption="Uploaded Image", use_column_width=True)
if st.button("Analyze Image"):
with st.spinner("Analyzing..."):
image_byte_arr = BytesIO()
image.save(image_byte_arr, format='PNG')
image_byte_arr = image_byte_arr.getvalue()
response = client.chat.completions.create(
model="gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": text_input},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64.b64encode(image_byte_arr).decode()}"
}
},
],
}
],
max_tokens=300,
)
st.write(response.choices[0].message.content)
elif option == "Audio":
text = "You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."
text_input = st.text_input(label="Enter text prompt to use with Audio context.", value=text)
audio_file = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
if audio_file:
if st.button("Transcribe Audio"):
with st.spinner("Transcribing..."):
transcription = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file
)
st.write(transcription.text)
st.session_state.messages.append({"role": "user", "content": f"Transcription: {transcription.text}"})
process_text(f"{text}\n\nTranscription: {transcription.text}")