Spaces:
Sleeping
Sleeping
import base64 | |
import cv2 | |
import glob | |
import json | |
import math | |
import os | |
import pytz | |
import random | |
import re | |
import requests | |
import streamlit as st | |
import streamlit.components.v1 as components | |
import textract | |
import time | |
import zipfile | |
import uuid | |
import platform | |
import extra_streamlit_components as stx | |
from audio_recorder_streamlit import audio_recorder | |
from bs4 import BeautifulSoup | |
from collections import deque | |
from datetime import datetime | |
from dotenv import load_dotenv | |
from gradio_client import Client | |
from huggingface_hub import InferenceClient | |
from io import BytesIO | |
from moviepy.editor import VideoFileClip | |
from PIL import Image | |
from PyPDF2 import PdfReader | |
from templates import bot_template, css, user_template | |
from urllib.parse import quote | |
from xml.etree import ElementTree as ET | |
import openai | |
from openai import OpenAI | |
# Load environment variables | |
load_dotenv() | |
# Configuration | |
Site_Name = 'Scholarly-Article-Document-Search-With-Memory' | |
title = "🔬🧠ScienceBrain.AI" | |
helpURL = 'https://huggingface.co/awacke1' | |
bugURL = 'https://huggingface.co/spaces/awacke1' | |
icons = '🔬' | |
st.set_page_config( | |
page_title=title, | |
page_icon=icons, | |
layout="wide", | |
initial_sidebar_state="auto", | |
menu_items={ | |
'Get Help': helpURL, | |
'Report a bug': bugURL, | |
'About': title | |
} | |
) | |
# Initialize cookie manager | |
cookie_manager = stx.CookieManager() | |
# File to store chat history and user data | |
CHAT_FILE = "chat_history.txt" | |
# API configurations | |
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' | |
API_KEY = st.secrets['API_KEY'] | |
MODEL1 = "meta-llama/Llama-2-7b-chat-hf" | |
MODEL1URL = "https://huggingface.co/meta-llama/Llama-2-7b-chat-hf" | |
HF_KEY = st.secrets['HF_KEY'] | |
headers = { | |
"Authorization": f"Bearer {HF_KEY}", | |
"Content-Type": "application/json" | |
} | |
# OpenAI client setup | |
client = OpenAI(api_key=st.secrets['OPENAI_API_KEY'], organization=st.secrets['OPENAI_ORG_ID']) | |
MODEL = "gpt-4-1106-preview" | |
# Session state initialization | |
if "openai_model" not in st.session_state: | |
st.session_state["openai_model"] = MODEL | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "users" not in st.session_state: | |
st.session_state.users = [] | |
if "current_user" not in st.session_state: | |
st.session_state.current_user = get_or_create_user() | |
# Sidebar configurations | |
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.") | |
if st.sidebar.button("Clear Session"): | |
st.session_state.messages = [] | |
# Function to save chat history and user data to file | |
def save_data(): | |
with open(CHAT_FILE, 'w') as f: | |
json.dump({ | |
'messages': st.session_state.messages, | |
'users': st.session_state.users | |
}, f) | |
# Function to load chat history and user data from file | |
def load_data(): | |
try: | |
with open(CHAT_FILE, 'r') as f: | |
data = json.load(f) | |
st.session_state.messages = data['messages'] | |
st.session_state.users = data['users'] | |
except FileNotFoundError: | |
st.session_state.messages = [] | |
st.session_state.users = [] | |
# Load data at the start | |
if 'data_loaded' not in st.session_state: | |
load_data() | |
st.session_state.data_loaded = True | |
# Function to get or create user | |
def get_or_create_user(): | |
user_id = cookie_manager.get(cookie='user_id') | |
if not user_id: | |
user_id = str(uuid.uuid4()) | |
cookie_manager.set('user_id', user_id) | |
user = next((u for u in st.session_state.users if u['id'] == user_id), None) | |
if not user: | |
user = { | |
'id': user_id, | |
'name': random.choice(['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Henry']), | |
'browser': f"{platform.system()} - {st.session_state.get('browser_info', 'Unknown')}" | |
} | |
st.session_state.users.append(user) | |
save_data() | |
return user | |
# HTML5 based Speech Synthesis (Text to Speech in Browser) | |
def SpeechSynthesis(result): | |
documentHTML5 = f""" | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>Read It Aloud</title> | |
<script type="text/javascript"> | |
function readAloud() {{ | |
const text = document.getElementById("textArea").value; | |
const speech = new SpeechSynthesisUtterance(text); | |
window.speechSynthesis.speak(speech); | |
}} | |
</script> | |
</head> | |
<body> | |
<h1>🔊 Read It Aloud</h1> | |
<textarea id="textArea" rows="10" cols="80">{result}</textarea> | |
<br> | |
<button onclick="readAloud()">🔊 Read Aloud</button> | |
</body> | |
</html> | |
""" | |
components.html(documentHTML5, width=1280, height=300) | |
# Function to generate filename | |
def generate_filename(prompt, file_type): | |
central = pytz.timezone('US/Central') | |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") | |
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") | |
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:240] | |
return f"{safe_date_time}_{safe_prompt}.{file_type}" | |
# Function to process text | |
def process_text(text_input): | |
if text_input: | |
st.session_state.messages.append({"role": "user", "content": text_input}) | |
with st.chat_message("user"): | |
st.markdown(text_input) | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
full_response = "" | |
for response in client.chat.completions.create( | |
model=st.session_state["openai_model"], | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
stream=True, | |
): | |
full_response += (response.choices[0].delta.content or "") | |
message_placeholder.markdown(full_response + "▌") | |
message_placeholder.markdown(full_response) | |
st.session_state.messages.append({"role": "assistant", "content": full_response}) | |
filename = generate_filename(text_input, "md") | |
create_file(filename, text_input, full_response, should_save) | |
return full_response | |
# Function to create file | |
def create_file(filename, prompt, response, should_save=True): | |
if should_save: | |
with open(filename, "w", encoding="utf-8") as f: | |
f.write(prompt + "\n\n" + response) | |
# ArXiv search function | |
def search_arxiv(query): | |
base_url = "http://export.arxiv.org/api/query?" | |
search_query = f"search_query=all:{quote(query)}&start=0&max_results=5" | |
response = requests.get(base_url + search_query) | |
if response.status_code == 200: | |
results = [] | |
for entry in response.text.split('<entry>')[1:]: | |
title = entry.split('<title>')[1].split('</title>')[0] | |
summary = entry.split('<summary>')[1].split('</summary>')[0] | |
link = entry.split('<id>')[1].split('</id>')[0] | |
results.append(f"Title: {title}\nSummary: {summary}\nLink: {link}\n") | |
return "\n".join(results) | |
else: | |
return "Error fetching results from ArXiv." | |
# Sidebar for user information and settings | |
with st.sidebar: | |
st.title("User Info") | |
st.write(f"Current User: {st.session_state.current_user['name']}") | |
st.write(f"Browser: {st.session_state.current_user['browser']}") | |
new_name = st.text_input("Change your name:") | |
if st.button("Update Name"): | |
if new_name: | |
for user in st.session_state.users: | |
if user['id'] == st.session_state.current_user['id']: | |
user['name'] = new_name | |
st.session_state.current_user['name'] = new_name | |
save_data() | |
st.success(f"Name updated to {new_name}") | |
st.rerun() | |
st.title("Active Users") | |
for user in st.session_state.users: | |
st.write(f"{user['name']} ({user['browser']})") | |
# Main chat area | |
st.title("Personalized Real-Time Chat with ArXiv Search and AI") | |
# Display chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Chat input | |
if prompt := st.chat_input("What would you like to know?"): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Check if it's an ArXiv search query | |
if prompt.lower().startswith("arxiv:"): | |
query = prompt[6:].strip() | |
with st.chat_message("assistant"): | |
with st.spinner("Searching ArXiv..."): | |
search_results = search_arxiv(query) | |
st.markdown(f"Search results for '{query}':\n\n{search_results}") | |
# Get AI commentary on the search results | |
ai_commentary = process_text(f"Provide a brief analysis of these ArXiv search results: {search_results}") | |
st.markdown(f"\nAI Analysis:\n{ai_commentary}") | |
st.session_state.messages.append({"role": "assistant", "content": f"Search results for '{query}':\n\n{search_results}\n\nAI Analysis:\n{ai_commentary}"}) | |
else: | |
# Regular chat processing | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
full_response = "" | |
for response in client.chat.completions.create( | |
model=st.session_state["openai_model"], | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
stream=True, | |
): | |
full_response += (response.choices[0].delta.content or "") | |
message_placeholder.markdown(full_response + "▌") | |
message_placeholder.markdown(full_response) | |
st.session_state.messages.append({"role": "assistant", "content": full_response}) | |
save_data() | |
st.rerun() | |
# Polling for updates | |
if st.button("Refresh Chat"): | |
st.rerun() | |
# Auto-refresh | |
if 'last_refresh' not in st.session_state: | |
st.session_state.last_refresh = time.time() | |
if time.time() - st.session_state.last_refresh > 5: # Refresh every 5 seconds | |
st.session_state.last_refresh = time.time() | |
st.rerun() | |
# Main function to handle different input types | |
def main(): | |
st.markdown("##### GPT-4 Multimodal AI Assistant: Text, Audio, Image, & Video") | |
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video")) | |
if option == "Text": | |
text_input = st.text_input("Enter your text:") | |
if text_input: | |
process_text(text_input) | |
elif option == "Image": | |
text = "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see." | |
text_input = st.text_input(label="Enter text prompt to use with Image context.", value=text) | |
image_input = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) | |
if image_input: | |
image = Image.open(image_input) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
if st.button("Analyze Image"): | |
with st.spinner("Analyzing..."): | |
image_byte_arr = BytesIO() | |
image.save(image_byte_arr, format='PNG') | |
image_byte_arr = image_byte_arr.getvalue() | |
response = client.chat.completions.create( | |
model="gpt-4-vision-preview", | |
messages=[ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": text_input}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{base64.b64encode(image_byte_arr).decode()}" | |
} | |
}, | |
], | |
} | |
], | |
max_tokens=300, | |
) | |
st.write(response.choices[0].message.content) | |
elif option == "Audio": | |
text = "You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown." | |
text_input = st.text_input(label="Enter text prompt to use with Audio context.", value=text) | |
audio_file = st.file_uploader("Upload an audio file", type=["mp3", "wav"]) | |
if audio_file: | |
if st.button("Transcribe Audio"): | |
with st.spinner("Transcribing..."): | |
transcription = client.audio.transcriptions.create( | |
model="whisper-1", | |
file=audio_file | |
) | |
st.write(transcription.text) | |
st.session_state.messages.append({"role": "user", "content": f"Transcription: {transcription.text}"}) | |
process_text(f"{text}\n\nTranscription: {transcription.text}") | |