Spaces:
Sleeping
Sleeping
File size: 16,150 Bytes
ceb3a99 7938082 ceb3a99 4976812 7938082 ceb3a99 7938082 ceb3a99 4976812 ceb3a99 4976812 ceb3a99 4976812 7938082 ceb3a99 4976812 7938082 4976812 7938082 4976812 ceb3a99 4976812 ceb3a99 4976812 ceb3a99 4976812 7938082 4976812 7938082 4976812 ceb3a99 7938082 4976812 ceb3a99 7938082 ceb3a99 7938082 ceb3a99 7938082 ceb3a99 7938082 ceb3a99 7938082 4976812 7938082 4976812 7938082 4976812 7938082 4976812 7938082 4976812 7938082 4976812 7938082 4976812 7938082 ceb3a99 7938082 ceb3a99 7938082 ceb3a99 7938082 ceb3a99 4976812 7938082 ceb3a99 7938082 ceb3a99 4976812 ceb3a99 4976812 7938082 ceb3a99 4976812 7938082 4976812 ceb3a99 7938082 ceb3a99 7938082 ceb3a99 4976812 ceb3a99 4976812 ceb3a99 4976812 ceb3a99 7938082 ceb3a99 4976812 ceb3a99 7938082 ceb3a99 7938082 ceb3a99 7938082 4976812 ceb3a99 4976812 ceb3a99 7938082 ceb3a99 4976812 7938082 ceb3a99 7938082 ceb3a99 7938082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
from pathlib import Path
from datetime import datetime
import edge_tts
import asyncio
import base64
import requests
from collections import defaultdict
from audio_recorder_streamlit import audio_recorder
import streamlit.components.v1 as components
import openai
from dotenv import load_dotenv
# Load environment
load_dotenv()
openai.api_key = os.getenv('OPENAI_API_KEY')
# Ensure edge_tts and other dependencies are installed
# pip install edge-tts openai streamlit-audiorecorder
# Initialize session state
if 'search_history' not in st.session_state:
st.session_state['search_history'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'search_columns' not in st.session_state:
st.session_state['search_columns'] = []
if 'initial_search_done' not in st.session_state:
st.session_state['initial_search_done'] = False
if 'tts_voice' not in st.session_state:
st.session_state['tts_voice'] = "en-US-AriaNeural"
if 'arxiv_last_query' not in st.session_state:
st.session_state['arxiv_last_query'] = ""
class VideoSearch:
def __init__(self):
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
self.load_dataset()
def fetch_dataset_rows(self):
"""Fetch dataset from HF API"""
try:
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
response = requests.get(url, timeout=30)
if response.status_code == 200:
data = response.json()
if 'rows' in data:
processed_rows = []
for row_data in data['rows']:
row = row_data.get('row', row_data)
for key in row:
if any(term in key.lower() for term in ['embed', 'vector', 'encoding']):
if isinstance(row[key], str):
try:
row[key] = [float(x.strip()) for x in row[key].strip('[]').split(',') if x.strip()]
except:
continue
processed_rows.append(row)
df = pd.DataFrame(processed_rows)
# Update search columns
st.session_state['search_columns'] = [col for col in df.columns
if col not in ['video_embed', 'description_embed', 'audio_embed']]
return df
return self.load_example_data()
except Exception:
return self.load_example_data()
def prepare_features(self):
"""Prepare embeddings with adaptive field detection"""
try:
embed_cols = [col for col in self.dataset.columns
if any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]
embeddings = {}
for col in embed_cols:
try:
data = []
for row in self.dataset[col]:
if isinstance(row, str):
values = [float(x.strip()) for x in row.strip('[]').split(',') if x.strip()]
elif isinstance(row, list):
values = row
else:
continue
data.append(values)
if data:
embeddings[col] = np.array(data)
except:
continue
# Set main embeddings for search
if 'video_embed' in embeddings:
self.video_embeds = embeddings['video_embed']
else:
self.video_embeds = next(iter(embeddings.values()))
if 'description_embed' in embeddings:
self.text_embeds = embeddings['description_embed']
else:
self.text_embeds = self.video_embeds
except Exception:
# Fallback to random embeddings
num_rows = len(self.dataset)
self.video_embeds = np.random.randn(num_rows, 384)
self.text_embeds = np.random.randn(num_rows, 384)
def load_example_data(self):
example_data = [
{
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
"youtube_id": "IO-vwtyicn4",
"description": "This video shows a close-up of an ancient text carved into a surface.",
"views": 45489,
"start_time": 1452,
"end_time": 1458,
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
}
]
return pd.DataFrame(example_data)
def load_dataset(self):
self.dataset = self.fetch_dataset_rows()
self.prepare_features()
def search(self, query, column=None, top_k=20):
query_embedding = self.text_model.encode([query])[0]
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
combined_sims = 0.5 * video_sims + 0.5 * text_sims
# Column filtering
if column and column in self.dataset.columns and column != "All Fields":
mask = self.dataset[column].astype(str).str.contains(query, case=False)
combined_sims[~mask] *= 0.5
top_k = min(top_k, 100)
top_indices = np.argsort(combined_sims)[-top_k:][::-1]
results = []
for idx in top_indices:
result = {'relevance_score': float(combined_sims[idx])}
for col in self.dataset.columns:
if col not in ['video_embed', 'description_embed', 'audio_embed']:
result[col] = self.dataset.iloc[idx][col]
results.append(result)
return results
# Use edge_tts for TTS
@st.cache_resource
def get_speech_model():
"""Cache speech model initialization."""
return edge_tts.Communicate
async def generate_speech(text, voice=None):
if not text.strip():
return None
if not voice:
voice = st.session_state['tts_voice']
try:
communicate = get_speech_model()(text, voice)
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
await communicate.save(audio_file)
return audio_file
except Exception as e:
st.error(f"Error generating speech: {e}")
return None
def transcribe_audio(audio_path):
"""Transcribe audio using Whisper."""
try:
with open(audio_path, "rb") as f:
transcription = openai.Audio.transcribe("whisper-1", f)
return transcription["text"].strip()
except Exception as e:
st.error(f"Error transcribing audio: {e}")
return ""
def show_file_manager():
"""Display file manager interface"""
st.subheader("π File Manager")
col1, col2 = st.columns(2)
with col1:
uploaded_file = st.file_uploader("Upload File", type=['txt', 'md', 'mp3'])
if uploaded_file:
with open(uploaded_file.name, "wb") as f:
f.write(uploaded_file.getvalue())
st.success(f"Uploaded: {uploaded_file.name}")
st.experimental_rerun()
with col2:
if st.button("π Clear All Files"):
for f in glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3"):
os.remove(f)
st.success("All files cleared!")
st.experimental_rerun()
files = glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3")
if files:
st.write("### Existing Files")
for f in files:
with st.expander(f"π {os.path.basename(f)}"):
if f.endswith('.mp3'):
st.audio(f)
else:
with open(f, 'r', encoding='utf-8') as file:
st.text_area("Content", file.read(), height=100)
if st.button(f"Delete {os.path.basename(f)}", key=f"del_{f}"):
os.remove(f)
st.experimental_rerun()
##########################
# Arxiv Integration #
##########################
# You need to implement or integrate perform_ai_lookup from your second app into this code.
# This is a placeholder. Replace with your actual perform_ai_lookup function logic.
# Ensure you have your Arxiv RAG model endpoint available.
# Example placeholder implementation (replace with your actual second app code):
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False):
# Placeholder: In your real code, you'll call your Arxiv RAG endpoint and get results.
# Here we just simulate a response.
mock_answer = f"This is a mock Arxiv response for query: {q}.\nReferences:\n[Paper 1] Example Title"
st.markdown(f"**Arxiv Search Results for '{q}':**\n\n{mock_answer}")
if vocal_summary:
audio_file = asyncio.run(generate_speech("This is a spoken summary of Arxiv results."))
if audio_file:
st.audio(audio_file)
# Add any other logic: extended_refs, titles_summary, etc.
return mock_answer
############################
# Main App Layout & Logic #
############################
def main():
st.title("π₯ Video & Arxiv Search with Voice")
# Initialize search class
search = VideoSearch()
# Create tabs
tab1, tab2, tab3, tab4 = st.tabs(["π Search", "ποΈ Voice Input", "π Arxiv", "π Files"])
# ---- Tab 1: Video Search ----
with tab1:
st.subheader("Search Videos")
col1, col2 = st.columns([3, 1])
with col1:
query = st.text_input("Enter your search query:",
value="ancient" if not st.session_state['initial_search_done'] else "")
with col2:
search_column = st.selectbox("Search in field:",
["All Fields"] + st.session_state['search_columns'])
col3, col4 = st.columns(2)
with col3:
num_results = st.slider("Number of results:", 1, 100, 20)
with col4:
search_button = st.button("π Search")
if (search_button or not st.session_state['initial_search_done']) and query:
st.session_state['initial_search_done'] = True
selected_column = None if search_column == "All Fields" else search_column
with st.spinner("Searching..."):
results = search.search(query, selected_column, num_results)
st.session_state['search_history'].append({
'query': query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': results[:5]
})
for i, result in enumerate(results, 1):
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=(i==1)):
cols = st.columns([2, 1])
with cols[0]:
st.markdown("**Description:**")
st.write(result['description'])
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
st.markdown(f"**Views:** {result['views']:,}")
with cols[1]:
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
if result.get('youtube_id'):
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
if st.button(f"π Audio Summary", key=f"audio_{i}"):
summary = f"Video summary: {result['description'][:200]}"
audio_file = asyncio.run(generate_speech(summary))
if audio_file:
st.audio(audio_file)
# Optionally delete after playing:
# if os.path.exists(audio_file):
# os.remove(audio_file)
# ---- Tab 2: Voice Input ----
with tab2:
st.subheader("Voice Input")
st.write("ποΈ Record your voice and automatically transcribe to text:")
audio_bytes = audio_recorder()
if audio_bytes:
# Save the recorded audio for transcription
audio_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav"
with open(audio_path, "wb") as f:
f.write(audio_bytes)
st.success("Audio recorded successfully!")
# Transcribe using Whisper
voice_query = transcribe_audio(audio_path)
if voice_query:
st.markdown("**Transcribed Text:**")
st.write(voice_query)
st.session_state['last_voice_input'] = voice_query
if st.button("π Search from Voice"):
results = search.search(voice_query, None, 20)
for i, result in enumerate(results, 1):
with st.expander(f"Result {i}", expanded=(i==1)):
st.write(result['description'])
if result.get('youtube_id'):
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
# Clean up
if os.path.exists(audio_path):
os.remove(audio_path)
# ---- Tab 3: Arxiv Search ----
with tab3:
st.subheader("Arxiv Search")
q = st.text_input("Enter your Arxiv search query:", value=st.session_state['arxiv_last_query'])
vocal_summary = st.checkbox("π Short Audio Summary", value=True)
extended_refs = st.checkbox("π Extended References", value=False)
titles_summary = st.checkbox("π Titles Only", value=True)
full_audio = st.checkbox("π Full Audio Results", value=False)
if st.button("π Arxiv Search"):
st.session_state['arxiv_last_query'] = q
perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs,
titles_summary=titles_summary, full_audio=full_audio)
# ---- Tab 4: File Manager ----
with tab4:
show_file_manager()
# Sidebar
with st.sidebar:
st.subheader("βοΈ Settings & History")
if st.button("ποΈ Clear History"):
st.session_state['search_history'] = []
st.experimental_rerun()
st.markdown("### Recent Searches")
for entry in reversed(st.session_state['search_history'][-5:]):
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
for i, result in enumerate(entry['results'], 1):
st.write(f"{i}. {result['description'][:100]}...")
st.markdown("### Voice Settings")
st.selectbox("TTS Voice:",
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
key="tts_voice")
if __name__ == "__main__":
main()
|