|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
from sentence_transformers import SentenceTransformer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import torch |
|
import json |
|
import os |
|
import glob |
|
import random |
|
from pathlib import Path |
|
from datetime import datetime, timedelta |
|
import edge_tts |
|
import asyncio |
|
import requests |
|
from collections import defaultdict |
|
import streamlit.components.v1 as components |
|
from urllib.parse import quote |
|
from xml.etree import ElementTree as ET |
|
from datasets import load_dataset |
|
import base64 |
|
import re |
|
|
|
|
|
USER_NAMES = [ |
|
"Alex", "Jordan", "Taylor", "Morgan", "Rowan", "Avery", "Riley", "Quinn", |
|
"Casey", "Jesse", "Reese", "Skyler", "Ellis", "Devon", "Aubrey", "Kendall", |
|
"Parker", "Dakota", "Sage", "Finley" |
|
] |
|
|
|
ENGLISH_VOICES = [ |
|
"en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-GB-TonyNeural", |
|
"en-US-JennyNeural", "en-US-DavisNeural", "en-GB-LibbyNeural", "en-CA-ClaraNeural", |
|
"en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural" |
|
] |
|
|
|
ROWS_PER_PAGE = 100 |
|
MIN_SEARCH_SCORE = 0.3 |
|
EXACT_MATCH_BOOST = 2.0 |
|
SAVED_INPUTS_DIR = "saved_inputs" |
|
os.makedirs(SAVED_INPUTS_DIR, exist_ok=True) |
|
|
|
SESSION_VARS = { |
|
'search_history': [], |
|
'last_voice_input': "", |
|
'transcript_history': [], |
|
'should_rerun': False, |
|
'search_columns': [], |
|
'initial_search_done': False, |
|
'tts_voice': "en-US-AriaNeural", |
|
'arxiv_last_query': "", |
|
'dataset_loaded': False, |
|
'current_page': 0, |
|
'data_cache': None, |
|
'dataset_info': None, |
|
'nps_submitted': False, |
|
'nps_last_shown': None, |
|
'old_val': None, |
|
'voice_text': None, |
|
'user_name': random.choice(USER_NAMES), |
|
'max_items': 100, |
|
'global_voice': "en-US-AriaNeural" |
|
} |
|
|
|
for var, default in SESSION_VARS.items(): |
|
if var not in st.session_state: |
|
st.session_state[var] = default |
|
|
|
@st.cache_resource |
|
def get_model(): |
|
return SentenceTransformer('all-MiniLM-L6-v2') |
|
|
|
def create_voice_component(): |
|
mycomponent = components.declare_component( |
|
"mycomponent", |
|
path="mycomponent" |
|
) |
|
return mycomponent |
|
|
|
def clean_for_speech(text: str) -> str: |
|
text = text.replace("\n", " ") |
|
text = text.replace("</s>", " ") |
|
text = text.replace("#", "") |
|
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) |
|
text = re.sub(r"\s+", " ", text).strip() |
|
return text |
|
|
|
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): |
|
text = clean_for_speech(text) |
|
if not text.strip(): |
|
return None |
|
rate_str = f"{rate:+d}%" |
|
pitch_str = f"{pitch:+d}Hz" |
|
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) |
|
out_fn = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3" |
|
await communicate.save(out_fn) |
|
return out_fn |
|
|
|
def speak_with_edge_tts(text, voice="en-US-AriaNeural"): |
|
return asyncio.run(edge_tts_generate_audio(text, voice, 0, 0)) |
|
|
|
def play_and_download_audio(file_path): |
|
if file_path and os.path.exists(file_path): |
|
st.audio(file_path) |
|
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>' |
|
st.markdown(dl_link, unsafe_allow_html=True) |
|
|
|
def generate_filename(prefix, text): |
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
safe_text = re.sub(r'[^\w\s-]', '', text[:50]).strip().lower() |
|
safe_text = re.sub(r'[-\s]+', '-', safe_text) |
|
return f"{prefix}_{timestamp}_{safe_text}.md" |
|
|
|
def save_input_as_md(user_name, text, prefix="input"): |
|
if not text.strip(): |
|
return |
|
fn = generate_filename(prefix, text) |
|
full_path = os.path.join(SAVED_INPUTS_DIR, fn) |
|
with open(full_path, 'w', encoding='utf-8') as f: |
|
f.write(f"# User: {user_name}\n") |
|
f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n") |
|
f.write(text) |
|
return full_path |
|
|
|
def save_response_as_md(user_name, text, prefix="response"): |
|
if not text.strip(): |
|
return |
|
fn = generate_filename(prefix, text) |
|
full_path = os.path.join(SAVED_INPUTS_DIR, fn) |
|
with open(full_path, 'w', encoding='utf-8') as f: |
|
f.write(f"# User: {user_name}\n") |
|
f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n") |
|
f.write(text) |
|
return full_path |
|
|
|
def list_saved_inputs(): |
|
files = sorted(glob.glob(os.path.join(SAVED_INPUTS_DIR, "*.md"))) |
|
return files |
|
|
|
def parse_md_file(fpath): |
|
|
|
user_line = "" |
|
ts_line = "" |
|
content_lines = [] |
|
with open(fpath, 'r', encoding='utf-8') as f: |
|
lines = f.readlines() |
|
for line in lines: |
|
if line.startswith("# User:"): |
|
user_line = line.replace("# User:", "").strip() |
|
elif line.startswith("**Timestamp:**"): |
|
ts_line = line.replace("**Timestamp:**", "").strip() |
|
else: |
|
content_lines.append(line.strip()) |
|
content = "\n".join(content_lines).strip() |
|
return user_line, ts_line, content |
|
|
|
def fetch_dataset_info(dataset_id, token): |
|
info_url = f"https://huggingface.co/api/datasets/{dataset_id}" |
|
try: |
|
response = requests.get(info_url, timeout=30) |
|
if response.status_code == 200: |
|
return response.json() |
|
except Exception: |
|
pass |
|
return None |
|
|
|
@st.cache_data |
|
def get_dataset_info(dataset_id, token): |
|
try: |
|
dataset = load_dataset(dataset_id, token=token, streaming=True) |
|
return dataset['train'].info |
|
except: |
|
return None |
|
|
|
@st.cache_data |
|
def load_dataset_page(dataset_id, token, page, rows_per_page): |
|
try: |
|
start_idx = page * rows_per_page |
|
end_idx = start_idx + rows_per_page |
|
dataset = load_dataset( |
|
dataset_id, |
|
token=token, |
|
streaming=False, |
|
split=f'train[{start_idx}:{end_idx}]' |
|
) |
|
return pd.DataFrame(dataset) |
|
except: |
|
return pd.DataFrame() |
|
|
|
class FastDatasetSearcher: |
|
def __init__(self, dataset_id="tomg-group-umd/cinepile"): |
|
self.dataset_id = dataset_id |
|
self.text_model = get_model() |
|
self.token = os.environ.get('DATASET_KEY') |
|
|
|
def load_page(self, page=0): |
|
return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE) |
|
|
|
def quick_search(self, query, df): |
|
if df.empty or not query.strip(): |
|
return df |
|
|
|
try: |
|
searchable_cols = [] |
|
if len(df) > 0: |
|
for col in df.columns: |
|
sample_val = df[col].iloc[0] |
|
if not isinstance(sample_val, (np.ndarray, bytes)): |
|
searchable_cols.append(col) |
|
|
|
query_lower = query.lower() |
|
query_terms = set(query_lower.split()) |
|
query_embedding = self.text_model.encode([query], show_progress_bar=False)[0] |
|
|
|
scores = [] |
|
matched_any = [] |
|
|
|
for _, row in df.iterrows(): |
|
text_parts = [] |
|
row_matched = False |
|
exact_match = False |
|
priority_fields = ['description', 'matched_text'] |
|
other_fields = [col for col in searchable_cols if col not in priority_fields] |
|
|
|
for col in priority_fields: |
|
if col in row: |
|
val = row[col] |
|
if val is not None: |
|
val_str = str(val).lower() |
|
if query_lower in val_str.split(): |
|
exact_match = True |
|
if any(term in val_str.split() for term in query_terms): |
|
row_matched = True |
|
text_parts.append(str(val)) |
|
|
|
for col in other_fields: |
|
val = row[col] |
|
if val is not None: |
|
val_str = str(val).lower() |
|
if query_lower in val_str.split(): |
|
exact_match = True |
|
if any(term in val_str.split() for term in query_terms): |
|
row_matched = True |
|
text_parts.append(str(val)) |
|
|
|
text = ' '.join(text_parts) |
|
if text.strip(): |
|
text_tokens = set(text.lower().split()) |
|
matching_terms = query_terms.intersection(text_tokens) |
|
keyword_score = len(matching_terms) / len(query_terms) if len(query_terms) > 0 else 0.0 |
|
|
|
text_embedding = self.text_model.encode([text], show_progress_bar=False)[0] |
|
semantic_score = float(cosine_similarity([query_embedding], [text_embedding])[0][0]) |
|
|
|
combined_score = 0.7 * keyword_score + 0.3 * semantic_score |
|
|
|
if exact_match: |
|
combined_score *= EXACT_MATCH_BOOST |
|
elif row_matched: |
|
combined_score *= 1.2 |
|
else: |
|
combined_score = 0.0 |
|
row_matched = False |
|
|
|
scores.append(combined_score) |
|
matched_any.append(row_matched) |
|
|
|
results_df = df.copy() |
|
results_df['score'] = scores |
|
results_df['matched'] = matched_any |
|
|
|
filtered_df = results_df[ |
|
(results_df['matched']) | |
|
(results_df['score'] > MIN_SEARCH_SCORE) |
|
] |
|
|
|
return filtered_df.sort_values('score', ascending=False) |
|
except: |
|
return df |
|
|
|
def play_text(text): |
|
voice = st.session_state.get('global_voice', "en-US-AriaNeural") |
|
audio_file = speak_with_edge_tts(text, voice=voice) |
|
if audio_file: |
|
play_and_download_audio(audio_file) |
|
|
|
def arxiv_search(query, max_results=3): |
|
|
|
|
|
base_url = "http://export.arxiv.org/api/query" |
|
params = { |
|
'search_query': query.replace(' ', '+'), |
|
'start': 0, |
|
'max_results': max_results |
|
} |
|
response = requests.get(base_url, params=params, timeout=30) |
|
if response.status_code == 200: |
|
root = ET.fromstring(response.text) |
|
ns = {"a": "http://www.w3.org/2005/Atom"} |
|
entries = root.findall('a:entry', ns) |
|
results = [] |
|
for entry in entries: |
|
title = entry.find('a:title', ns).text.strip() |
|
summary = entry.find('a:summary', ns).text.strip() |
|
|
|
summary_short = summary[:300] + "..." |
|
results.append((title, summary_short)) |
|
return results |
|
return [] |
|
|
|
def summarize_arxiv_results(results): |
|
|
|
lines = [] |
|
for i, (title, summary) in enumerate(results, 1): |
|
lines.append(f"Result {i}: {title}\n{summary}\n") |
|
return "\n\n".join(lines) |
|
|
|
def main(): |
|
st.title("ποΈ Voice Chat & Search") |
|
|
|
|
|
with st.sidebar: |
|
|
|
st.session_state['user_name'] = st.text_input("Current User:", value=st.session_state['user_name']) |
|
|
|
|
|
st.session_state['global_voice'] = st.selectbox("Select Global Voice:", ENGLISH_VOICES, index=0) |
|
|
|
st.session_state['max_items'] = st.number_input("Max Items per search iteration:", min_value=1, max_value=1000, value=st.session_state['max_items']) |
|
|
|
st.subheader("π Saved Inputs & Responses") |
|
saved_files = list_saved_inputs() |
|
for fpath in saved_files: |
|
user, ts, content = parse_md_file(fpath) |
|
fname = os.path.basename(fpath) |
|
st.write(f"- {fname} (User: {user})") |
|
|
|
|
|
voice_component = create_voice_component() |
|
voice_val = voice_component(my_input_value="Start speaking...") |
|
|
|
|
|
tab1, tab2, tab3, tab4 = st.tabs(["π£οΈ Voice Chat History", "π ArXiv Search", "π Dataset Search", "βοΈ Settings"]) |
|
|
|
|
|
with tab1: |
|
st.subheader("Voice Chat History") |
|
|
|
files = list_saved_inputs() |
|
for fpath in reversed(files): |
|
user, ts, content = parse_md_file(fpath) |
|
with st.expander(f"{ts} - {user}", expanded=False): |
|
st.write(content) |
|
if st.button("π Read Aloud", key=f"read_{fpath}"): |
|
play_text(content) |
|
|
|
|
|
with tab2: |
|
st.subheader("ArXiv Search") |
|
|
|
edited_input = st.text_area("Enter or Edit Search Query:", value=(voice_val.strip() if voice_val else ""), height=100) |
|
autorun = st.checkbox("β‘ Auto-Run", value=True) |
|
run_arxiv = st.button("π ArXiv Search") |
|
|
|
input_changed = (edited_input != st.session_state.get('old_val')) |
|
if autorun and input_changed and edited_input.strip(): |
|
st.session_state['old_val'] = edited_input |
|
|
|
save_input_as_md(st.session_state['user_name'], edited_input, prefix="input") |
|
with st.spinner("Searching ArXiv..."): |
|
results = arxiv_search(edited_input) |
|
if results: |
|
summary = summarize_arxiv_results(results) |
|
|
|
save_response_as_md(st.session_state['user_name'], summary, prefix="response") |
|
st.write(summary) |
|
|
|
play_text(summary) |
|
else: |
|
st.warning("No results found on ArXiv.") |
|
|
|
if run_arxiv and edited_input.strip(): |
|
|
|
save_input_as_md(st.session_state['user_name'], edited_input, prefix="input") |
|
with st.spinner("Searching ArXiv..."): |
|
results = arxiv_search(edited_input) |
|
if results: |
|
summary = summarize_arxiv_results(results) |
|
save_response_as_md(st.session_state['user_name'], summary, prefix="response") |
|
st.write(summary) |
|
play_text(summary) |
|
else: |
|
st.warning("No results found on ArXiv.") |
|
|
|
|
|
with tab3: |
|
st.subheader("Dataset Search") |
|
search = FastDatasetSearcher() |
|
query = st.text_input("Enter dataset search query:") |
|
run_ds_search = st.button("Search Dataset") |
|
num_results = st.slider("Max results:", 1, 100, 20) |
|
|
|
if run_ds_search and query.strip(): |
|
with st.spinner("Searching dataset..."): |
|
df = search.load_page() |
|
results = search.quick_search(query, df) |
|
if len(results) > 0: |
|
st.write(f"Found {len(results)} results:") |
|
shown = 0 |
|
for i, (_, result) in enumerate(results.iterrows(), 1): |
|
if shown >= num_results: |
|
break |
|
with st.expander(f"Result {i}", expanded=(i==1)): |
|
|
|
for k, v in result.items(): |
|
if k not in ['score', 'matched']: |
|
st.write(f"**{k}:** {v}") |
|
shown += 1 |
|
else: |
|
st.warning("No matching results found.") |
|
|
|
|
|
with tab4: |
|
st.subheader("Settings") |
|
st.write("Adjust voice and search parameters in the sidebar.") |
|
if st.button("ποΈ Clear Search History"): |
|
st.session_state['search_history'] = [] |
|
|
|
|
|
|
|
st.success("Search history cleared!") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|