Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
import torch
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
import glob
|
10 |
+
from pathlib import Path
|
11 |
+
from datetime import datetime
|
12 |
+
import edge_tts
|
13 |
+
import asyncio
|
14 |
+
import base64
|
15 |
+
import requests
|
16 |
+
from collections import defaultdict
|
17 |
+
from audio_recorder_streamlit import audio_recorder
|
18 |
+
import streamlit.components.v1 as components
|
19 |
+
import re
|
20 |
+
from urllib.parse import quote
|
21 |
+
from xml.etree import ElementTree as ET
|
22 |
+
|
23 |
+
# Initialize session state
|
24 |
+
if 'search_history' not in st.session_state:
|
25 |
+
st.session_state['search_history'] = []
|
26 |
+
if 'last_voice_input' not in st.session_state:
|
27 |
+
st.session_state['last_voice_input'] = ""
|
28 |
+
if 'transcript_history' not in st.session_state:
|
29 |
+
st.session_state['transcript_history'] = []
|
30 |
+
if 'should_rerun' not in st.session_state:
|
31 |
+
st.session_state['should_rerun'] = False
|
32 |
+
if 'search_columns' not in st.session_state:
|
33 |
+
st.session_state['search_columns'] = []
|
34 |
+
if 'initial_search_done' not in st.session_state:
|
35 |
+
st.session_state['initial_search_done'] = False
|
36 |
+
if 'tts_voice' not in st.session_state:
|
37 |
+
st.session_state['tts_voice'] = "en-US-AriaNeural"
|
38 |
+
if 'arxiv_last_query' not in st.session_state:
|
39 |
+
st.session_state['arxiv_last_query'] = ""
|
40 |
+
if 'old_val' not in st.session_state:
|
41 |
+
st.session_state['old_val'] = None
|
42 |
+
|
43 |
+
def highlight_text(text, query):
|
44 |
+
"""Highlight case-insensitive occurrences of query in text with bold formatting."""
|
45 |
+
if not query:
|
46 |
+
return text
|
47 |
+
pattern = re.compile(re.escape(query), re.IGNORECASE)
|
48 |
+
return pattern.sub(lambda m: f"**{m.group(0)}**", text)
|
49 |
+
|
50 |
+
class VideoSearch:
|
51 |
+
def __init__(self):
|
52 |
+
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
53 |
+
self.load_dataset()
|
54 |
+
|
55 |
+
def fetch_dataset_rows(self):
|
56 |
+
"""Fetch dataset from Hugging Face API"""
|
57 |
+
try:
|
58 |
+
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
|
59 |
+
response = requests.get(url, timeout=30)
|
60 |
+
if response.status_code == 200:
|
61 |
+
data = response.json()
|
62 |
+
if 'rows' in data:
|
63 |
+
processed_rows = []
|
64 |
+
for row_data in data['rows']:
|
65 |
+
row = row_data.get('row', row_data)
|
66 |
+
for key in row:
|
67 |
+
if any(term in key.lower() for term in ['embed', 'vector', 'encoding']):
|
68 |
+
if isinstance(row[key], str):
|
69 |
+
try:
|
70 |
+
row[key] = [float(x.strip()) for x in row[key].strip('[]').split(',') if x.strip()]
|
71 |
+
except:
|
72 |
+
continue
|
73 |
+
processed_rows.append(row)
|
74 |
+
|
75 |
+
df = pd.DataFrame(processed_rows)
|
76 |
+
st.session_state['search_columns'] = [col for col in df.columns
|
77 |
+
if col not in ['video_embed', 'description_embed', 'audio_embed']]
|
78 |
+
return df
|
79 |
+
return self.load_example_data()
|
80 |
+
except:
|
81 |
+
return self.load_example_data()
|
82 |
+
|
83 |
+
def prepare_features(self):
|
84 |
+
"""Prepare embeddings with adaptive field detection"""
|
85 |
+
try:
|
86 |
+
embed_cols = [col for col in self.dataset.columns
|
87 |
+
if any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]
|
88 |
+
|
89 |
+
embeddings = {}
|
90 |
+
for col in embed_cols:
|
91 |
+
try:
|
92 |
+
data = []
|
93 |
+
for row in self.dataset[col]:
|
94 |
+
if isinstance(row, str):
|
95 |
+
values = [float(x.strip()) for x in row.strip('[]').split(',') if x.strip()]
|
96 |
+
elif isinstance(row, list):
|
97 |
+
values = row
|
98 |
+
else:
|
99 |
+
continue
|
100 |
+
data.append(values)
|
101 |
+
|
102 |
+
if data:
|
103 |
+
embeddings[col] = np.array(data)
|
104 |
+
except:
|
105 |
+
continue
|
106 |
+
|
107 |
+
if 'video_embed' in embeddings:
|
108 |
+
self.video_embeds = embeddings['video_embed']
|
109 |
+
else:
|
110 |
+
self.video_embeds = next(iter(embeddings.values()))
|
111 |
+
|
112 |
+
if 'description_embed' in embeddings:
|
113 |
+
self.text_embeds = embeddings['description_embed']
|
114 |
+
else:
|
115 |
+
self.text_embeds = self.video_embeds
|
116 |
+
|
117 |
+
except:
|
118 |
+
# Fallback to random embeddings
|
119 |
+
num_rows = len(self.dataset)
|
120 |
+
self.video_embeds = np.random.randn(num_rows, 384)
|
121 |
+
self.text_embeds = np.random.randn(num_rows, 384)
|
122 |
+
|
123 |
+
def load_example_data(self):
|
124 |
+
"""Load example data as fallback"""
|
125 |
+
example_data = [
|
126 |
+
{
|
127 |
+
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
|
128 |
+
"youtube_id": "IO-vwtyicn4",
|
129 |
+
"description": "This video shows a close-up of an ancient text carved into a surface.",
|
130 |
+
"views": 45489,
|
131 |
+
"start_time": 1452,
|
132 |
+
"end_time": 1458,
|
133 |
+
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
|
134 |
+
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
|
135 |
+
}
|
136 |
+
]
|
137 |
+
return pd.DataFrame(example_data)
|
138 |
+
|
139 |
+
def load_dataset(self):
|
140 |
+
self.dataset = self.fetch_dataset_rows()
|
141 |
+
self.prepare_features()
|
142 |
+
|
143 |
+
def search(self, query, column=None, top_k=20):
|
144 |
+
# Semantic search
|
145 |
+
query_embedding = self.text_model.encode([query])[0]
|
146 |
+
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
|
147 |
+
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
|
148 |
+
combined_sims = 0.5 * video_sims + 0.5 * text_sims
|
149 |
+
|
150 |
+
# If a column is selected (not All Fields), strictly filter by textual match
|
151 |
+
if column and column in self.dataset.columns and column != "All Fields":
|
152 |
+
mask = self.dataset[column].astype(str).str.contains(query, case=False, na=False)
|
153 |
+
# Only keep rows that contain the query text in the selected column
|
154 |
+
combined_sims = combined_sims[mask]
|
155 |
+
filtered_dataset = self.dataset[mask].copy()
|
156 |
+
else:
|
157 |
+
filtered_dataset = self.dataset.copy()
|
158 |
+
|
159 |
+
# Get top results
|
160 |
+
top_k = min(top_k, len(combined_sims))
|
161 |
+
if top_k == 0:
|
162 |
+
return []
|
163 |
+
top_indices = np.argsort(combined_sims)[-top_k:][::-1]
|
164 |
+
|
165 |
+
results = []
|
166 |
+
filtered_dataset = filtered_dataset.iloc[top_indices]
|
167 |
+
filtered_sims = combined_sims[top_indices]
|
168 |
+
for idx, row in zip(top_indices, filtered_dataset.itertuples()):
|
169 |
+
result = {'relevance_score': float(filtered_sims[list(top_indices).index(idx)])}
|
170 |
+
for col in filtered_dataset.columns:
|
171 |
+
if col not in ['video_embed', 'description_embed', 'audio_embed']:
|
172 |
+
result[col] = getattr(row, col)
|
173 |
+
results.append(result)
|
174 |
+
|
175 |
+
return results
|
176 |
+
|
177 |
+
@st.cache_resource
|
178 |
+
def get_speech_model():
|
179 |
+
return edge_tts.Communicate
|
180 |
+
|
181 |
+
async def generate_speech(text, voice=None):
|
182 |
+
if not text.strip():
|
183 |
+
return None
|
184 |
+
if not voice:
|
185 |
+
voice = st.session_state['tts_voice']
|
186 |
+
try:
|
187 |
+
communicate = get_speech_model()(text, voice)
|
188 |
+
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
|
189 |
+
await communicate.save(audio_file)
|
190 |
+
return audio_file
|
191 |
+
except Exception as e:
|
192 |
+
st.error(f"Error generating speech: {e}")
|
193 |
+
return None
|
194 |
+
|
195 |
+
def show_file_manager():
|
196 |
+
"""Display file manager interface"""
|
197 |
+
st.subheader("π File Manager")
|
198 |
+
col1, col2 = st.columns(2)
|
199 |
+
with col1:
|
200 |
+
uploaded_file = st.file_uploader("Upload File", type=['txt', 'md', 'mp3'])
|
201 |
+
if uploaded_file:
|
202 |
+
with open(uploaded_file.name, "wb") as f:
|
203 |
+
f.write(uploaded_file.getvalue())
|
204 |
+
st.success(f"Uploaded: {uploaded_file.name}")
|
205 |
+
st.experimental_rerun()
|
206 |
+
|
207 |
+
with col2:
|
208 |
+
if st.button("π Clear All Files"):
|
209 |
+
for f in glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3"):
|
210 |
+
os.remove(f)
|
211 |
+
st.success("All files cleared!")
|
212 |
+
st.experimental_rerun()
|
213 |
+
|
214 |
+
files = glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3")
|
215 |
+
if files:
|
216 |
+
st.write("### Existing Files")
|
217 |
+
for f in files:
|
218 |
+
with st.expander(f"π {os.path.basename(f)}"):
|
219 |
+
if f.endswith('.mp3'):
|
220 |
+
st.audio(f)
|
221 |
+
else:
|
222 |
+
with open(f, 'r', encoding='utf-8') as file:
|
223 |
+
st.text_area("Content", file.read(), height=100)
|
224 |
+
if st.button(f"Delete {os.path.basename(f)}", key=f"del_{f}"):
|
225 |
+
os.remove(f)
|
226 |
+
st.experimental_rerun()
|
227 |
+
|
228 |
+
def arxiv_search(query, max_results=5):
|
229 |
+
"""Perform a simple Arxiv search using their API and return top results."""
|
230 |
+
base_url = "http://export.arxiv.org/api/query?"
|
231 |
+
search_url = base_url + f"search_query={quote(query)}&start=0&max_results={max_results}"
|
232 |
+
r = requests.get(search_url)
|
233 |
+
if r.status_code == 200:
|
234 |
+
root = ET.fromstring(r.text)
|
235 |
+
ns = {'atom': 'http://www.w3.org/2005/Atom'}
|
236 |
+
entries = root.findall('atom:entry', ns)
|
237 |
+
results = []
|
238 |
+
for entry in entries:
|
239 |
+
title = entry.find('atom:title', ns).text.strip()
|
240 |
+
summary = entry.find('atom:summary', ns).text.strip()
|
241 |
+
link = None
|
242 |
+
for l in entry.findall('atom:link', ns):
|
243 |
+
if l.get('type') == 'text/html':
|
244 |
+
link = l.get('href')
|
245 |
+
break
|
246 |
+
results.append((title, summary, link))
|
247 |
+
return results
|
248 |
+
return []
|
249 |
+
|
250 |
+
def perform_arxiv_lookup(q, vocal_summary=True, titles_summary=True, full_audio=False):
|
251 |
+
results = arxiv_search(q, max_results=5)
|
252 |
+
if not results:
|
253 |
+
st.write("No Arxiv results found.")
|
254 |
+
return
|
255 |
+
st.markdown(f"**Arxiv Search Results for '{q}':**")
|
256 |
+
for i, (title, summary, link) in enumerate(results, start=1):
|
257 |
+
st.markdown(f"**{i}. {title}**")
|
258 |
+
st.write(summary)
|
259 |
+
if link:
|
260 |
+
st.markdown(f"[View Paper]({link})")
|
261 |
+
|
262 |
+
# TTS Options
|
263 |
+
if vocal_summary:
|
264 |
+
spoken_text = f"Here are some Arxiv results for {q}. "
|
265 |
+
if titles_summary:
|
266 |
+
spoken_text += " Titles: " + ", ".join([res[0] for res in results])
|
267 |
+
else:
|
268 |
+
spoken_text += " " + results[0][1][:200]
|
269 |
+
|
270 |
+
audio_file = asyncio.run(generate_speech(spoken_text))
|
271 |
+
if audio_file:
|
272 |
+
st.audio(audio_file)
|
273 |
+
|
274 |
+
if full_audio:
|
275 |
+
full_text = ""
|
276 |
+
for i,(title, summary, _) in enumerate(results, start=1):
|
277 |
+
full_text += f"Result {i}: {title}. {summary} "
|
278 |
+
audio_file_full = asyncio.run(generate_speech(full_text))
|
279 |
+
if audio_file_full:
|
280 |
+
st.write("### Full Audio")
|
281 |
+
st.audio(audio_file_full)
|
282 |
+
|
283 |
+
def main():
|
284 |
+
st.title("π₯ Video & Arxiv Search with Voice Input")
|
285 |
+
|
286 |
+
search = VideoSearch()
|
287 |
+
|
288 |
+
tab1, tab2, tab3, tab4 = st.tabs(["π Search", "ποΈ Voice Input", "π Arxiv", "π Files"])
|
289 |
+
|
290 |
+
# ---- Tab 1: Video Search ----
|
291 |
+
with tab1:
|
292 |
+
st.subheader("Search Videos")
|
293 |
+
col1, col2 = st.columns([3, 1])
|
294 |
+
with col1:
|
295 |
+
query = st.text_input("Enter your search query:",
|
296 |
+
value="ancient" if not st.session_state['initial_search_done'] else "")
|
297 |
+
with col2:
|
298 |
+
search_column = st.selectbox("Search in field:",
|
299 |
+
["All Fields"] + st.session_state['search_columns'])
|
300 |
+
|
301 |
+
col3, col4 = st.columns(2)
|
302 |
+
with col3:
|
303 |
+
num_results = st.slider("Number of results:", 1, 100, 20)
|
304 |
+
with col4:
|
305 |
+
search_button = st.button("π Search")
|
306 |
+
|
307 |
+
if (search_button or not st.session_state['initial_search_done']) and query:
|
308 |
+
st.session_state['initial_search_done'] = True
|
309 |
+
selected_column = None if search_column == "All Fields" else search_column
|
310 |
+
with st.spinner("Searching..."):
|
311 |
+
results = search.search(query, selected_column, num_results)
|
312 |
+
|
313 |
+
st.session_state['search_history'].append({
|
314 |
+
'query': query,
|
315 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
316 |
+
'results': results[:5]
|
317 |
+
})
|
318 |
+
|
319 |
+
for i, result in enumerate(results, 1):
|
320 |
+
# Highlight the query in the description
|
321 |
+
highlighted_desc = highlight_text(result['description'], query)
|
322 |
+
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=(i==1)):
|
323 |
+
cols = st.columns([2, 1])
|
324 |
+
with cols[0]:
|
325 |
+
st.markdown("**Description:**")
|
326 |
+
st.write(highlighted_desc)
|
327 |
+
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
|
328 |
+
st.markdown(f"**Views:** {result['views']:,}")
|
329 |
+
|
330 |
+
with cols[1]:
|
331 |
+
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
|
332 |
+
if result.get('youtube_id'):
|
333 |
+
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
|
334 |
+
|
335 |
+
if st.button(f"π Audio Summary {i}", key=f"audio_{i}"):
|
336 |
+
summary = f"Video summary: {result['description'][:200]}"
|
337 |
+
audio_file = asyncio.run(generate_speech(summary))
|
338 |
+
if audio_file:
|
339 |
+
st.audio(audio_file)
|
340 |
+
|
341 |
+
# ---- Tab 2: Voice Input ----
|
342 |
+
# Reintroduce the mycomponent from earlier code for voice input accumulation
|
343 |
+
with tab2:
|
344 |
+
st.subheader("Voice Input (HTML Component)")
|
345 |
+
|
346 |
+
# Declare the custom component
|
347 |
+
mycomponent = components.declare_component("mycomponent", path="mycomponent")
|
348 |
+
|
349 |
+
# Use the component to get accumulated voice input
|
350 |
+
val = mycomponent(my_input_value="Hello")
|
351 |
+
|
352 |
+
if val:
|
353 |
+
val_stripped = val.replace('\n', ' ')
|
354 |
+
edited_input = st.text_area("βοΈ Edit Input:", value=val_stripped, height=100)
|
355 |
+
|
356 |
+
# Just allow searching the videos from the edited input
|
357 |
+
if st.button("π Search from Edited Voice Input"):
|
358 |
+
results = search.search(edited_input, None, 20)
|
359 |
+
for i, result in enumerate(results, 1):
|
360 |
+
# Highlight query in description
|
361 |
+
highlighted_desc = highlight_text(result['description'], edited_input)
|
362 |
+
with st.expander(f"Result {i}", expanded=(i==1)):
|
363 |
+
st.write(highlighted_desc)
|
364 |
+
if result.get('youtube_id'):
|
365 |
+
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
|
366 |
+
|
367 |
+
# Optionally also let user record audio via audio_recorder (not integrated with transcription)
|
368 |
+
st.write("Or record audio (not ASR integrated):")
|
369 |
+
audio_bytes = audio_recorder()
|
370 |
+
if audio_bytes:
|
371 |
+
audio_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav"
|
372 |
+
with open(audio_path, "wb") as f:
|
373 |
+
f.write(audio_bytes)
|
374 |
+
st.success("Audio recorded successfully!")
|
375 |
+
# No transcription is provided since no external ASR is included here.
|
376 |
+
if os.path.exists(audio_path):
|
377 |
+
os.remove(audio_path)
|
378 |
+
|
379 |
+
# ---- Tab 3: Arxiv Search ----
|
380 |
+
with tab3:
|
381 |
+
st.subheader("Arxiv Search")
|
382 |
+
q = st.text_input("Enter your Arxiv search query:", value=st.session_state['arxiv_last_query'])
|
383 |
+
vocal_summary = st.checkbox("π Short Audio Summary", value=True)
|
384 |
+
titles_summary = st.checkbox("π Titles Only", value=True)
|
385 |
+
full_audio = st.checkbox("π Full Audio Results", value=False)
|
386 |
+
|
387 |
+
if st.button("π Arxiv Search"):
|
388 |
+
st.session_state['arxiv_last_query'] = q
|
389 |
+
perform_arxiv_lookup(q, vocal_summary=vocal_summary, titles_summary=titles_summary, full_audio=full_audio)
|
390 |
+
|
391 |
+
# ---- Tab 4: File Manager ----
|
392 |
+
with tab4:
|
393 |
+
show_file_manager()
|
394 |
+
|
395 |
+
# Sidebar
|
396 |
+
with st.sidebar:
|
397 |
+
st.subheader("βοΈ Settings & History")
|
398 |
+
if st.button("ποΈ Clear History"):
|
399 |
+
st.session_state['search_history'] = []
|
400 |
+
st.experimental_rerun()
|
401 |
+
|
402 |
+
st.markdown("### Recent Searches")
|
403 |
+
for entry in reversed(st.session_state['search_history'][-5:]):
|
404 |
+
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
|
405 |
+
for i, result in enumerate(entry['results'], 1):
|
406 |
+
st.write(f"{i}. {result['description'][:100]}...")
|
407 |
+
|
408 |
+
st.markdown("### Voice Settings")
|
409 |
+
st.selectbox("TTS Voice:",
|
410 |
+
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
|
411 |
+
key="tts_voice")
|
412 |
+
|
413 |
+
if __name__ == "__main__":
|
414 |
+
main()
|