File size: 28,384 Bytes
0b93794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8226326
0b93794
 
 
 
8226326
0b93794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f86351
0b93794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8226326
0b93794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f86351
 
 
0b93794
 
 
 
 
 
 
 
 
5f86351
 
 
0b93794
 
 
5f86351
 
0b93794
 
 
797d437
f1ee5b9
797d437
 
 
 
 
5f86351
 
797d437
 
5f86351
f1ee5b9
797d437
 
5f86351
 
797d437
5f86351
 
 
 
 
 
 
 
797d437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b93794
5f86351
 
 
0b93794
 
 
 
 
 
 
 
 
 
 
 
 
 
5f86351
 
 
0b93794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f86351
0b93794
 
 
 
 
 
5f86351
0b93794
 
 
 
 
 
 
 
dcbdb57
0b93794
 
 
 
 
 
 
 
 
5f86351
 
 
 
0b93794
 
 
 
 
 
 
 
 
5f86351
0b93794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f86351
 
0b93794
 
 
 
 
 
 
5f86351
0b93794
 
 
 
 
 
 
 
 
 
 
 
 
5f86351
 
 
 
 
 
 
 
 
 
1f36af1
5f86351
 
 
 
 
 
 
 
 
 
1f36af1
5f86351
 
 
 
 
 
 
1f36af1
5f86351
 
 
 
 
 
 
 
 
 
 
1f36af1
5f86351
 
 
 
1f36af1
5f86351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f36af1
5f86351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f36af1
5f86351
 
 
 
 
 
 
 
1f36af1
5f86351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f36af1
8226326
5f86351
5f0a423
5f86351
 
 
a74fb9b
5f86351
 
a74fb9b
5f86351
 
5f0a423
 
ea020d2
2a4744f
ea020d2
5f0a423
e8d2b4d
 
 
 
 
 
5f0a423
dd32d55
a74fb9b
 
5f86351
 
a74fb9b
 
 
 
5f0a423
 
4391d9b
5f0a423
0b93794
be0b2a3
0b93794
 
be0b2a3
 
0b93794
 
 
8226326
5f86351
0b93794
 
 
 
 
 
 
5f86351
 
 
 
 
 
0b93794
 
5f86351
 
 
0b93794
 
 
5f86351
0b93794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f86351
0b93794
 
 
 
 
 
 
ee45388
5f86351
0b93794
ee45388
5f86351
0b93794
ee45388
5f86351
 
ee45388
5f86351
ee45388
5f86351
ee45388
5f86351
ee45388
 
 
5f86351
ee45388
 
 
 
0b93794
ee45388
 
 
 
 
 
 
 
 
 
 
5f86351
 
 
 
 
ee45388
 
 
 
5f86351
 
 
 
 
ee45388
8226326
ee45388
 
390f1f8
 
ee45388
390f1f8
 
 
 
 
 
ee45388
 
 
8226326
0b93794
 
ee45388
8226326
ee45388
 
8226326
5f86351
8226326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f86351
ee45388
 
 
 
0b93794
8226326
0b93794
 
ce7c4f5
c6df19f
 
8226326
ee45388
5f86351
 
 
ee45388
5f86351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee45388
5f86351
ee45388
 
 
 
 
 
5f86351
 
 
 
 
ee45388
 
5f86351
ee45388
 
 
 
8226326
ee45388
5f86351
ee45388
 
 
 
 
 
 
 
 
 
 
 
 
5f86351
ee45388
8226326
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque, Counter
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
from streamlit_marquee import streamlit_marquee

# 🎯 1. Core Configuration & Setup
st.set_page_config(
    page_title="🚲TalkingAIResearcher🏆",
    page_icon="🚲🏆",
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a bug': 'https://huggingface.co/spaces/awacke1',
        'About': "🚲TalkingAIResearcher🏆"
    }
)
load_dotenv()

# Add available English voices for Edge TTS
EDGE_TTS_VOICES = [
    "en-US-AriaNeural",
    "en-US-GuyNeural",
    "en-US-JennyNeural",
    "en-GB-SoniaNeural",
    "en-GB-RyanNeural",
    "en-AU-NatashaNeural",
    "en-AU-WilliamNeural",
    "en-CA-ClaraNeural",
    "en-CA-LiamNeural"
]

# Initialize session state variables
if 'marquee_settings' not in st.session_state:
    # Default to 20s animationDuration instead of 10s:
    st.session_state['marquee_settings'] = {
        "background": "#1E1E1E",
        "color": "#FFFFFF",
        "font-size": "14px",
        "animationDuration": "20s",  # <- changed to 20s
        "width": "100%",
        "lineHeight": "35px"
    }

if 'tts_voice' not in st.session_state:
    st.session_state['tts_voice'] = EDGE_TTS_VOICES[0]
if 'audio_format' not in st.session_state:
    st.session_state['audio_format'] = 'mp3'
if 'transcript_history' not in st.session_state:
    st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
    st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
    st.session_state['openai_model'] = "gpt-4o-2024-05-13"
if 'messages' not in st.session_state:
    st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
    st.session_state['last_voice_input'] = ""
if 'editing_file' not in st.session_state:
    st.session_state['editing_file'] = None
if 'edit_new_name' not in st.session_state:
    st.session_state['edit_new_name'] = ""
if 'edit_new_content' not in st.session_state:
    st.session_state['edit_new_content'] = ""
if 'viewing_prefix' not in st.session_state:
    st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
    st.session_state['should_rerun'] = False
if 'old_val' not in st.session_state:
    st.session_state['old_val'] = None
if 'last_query' not in st.session_state:
    st.session_state['last_query'] = ""
if 'marquee_content' not in st.session_state:
    st.session_state['marquee_content'] = "🚀 Welcome to TalkingAIResearcher | 🤖 Your Research Assistant"

# 🔑 2. API Setup & Clients
openai_api_key = os.getenv('OPENAI_API_KEY', "")
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
xai_key = os.getenv('xai',"")
if 'OPENAI_API_KEY' in st.secrets:
    openai_api_key = st.secrets['OPENAI_API_KEY']
if 'ANTHROPIC_API_KEY' in st.secrets:
    anthropic_key = st.secrets["ANTHROPIC_API_KEY"]

openai.api_key = openai_api_key
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
HF_KEY = os.getenv('HF_KEY')
API_URL = os.getenv('API_URL')

# Constants
FILE_EMOJIS = {
    "md": "📝",
    "mp3": "🎵",
    "wav": "🔊"
}

def get_central_time():
    """Get current time in US Central timezone"""
    central = pytz.timezone('US/Central')
    return datetime.now(central)

def format_timestamp_prefix():
    """Generate timestamp prefix in format MM_dd_yy_hh_mm_AM/PM"""
    ct = get_central_time()
    return ct.strftime("%m_%d_%y_%I_%M_%p")

def initialize_marquee_settings():
    """Initialize marquee settings in session state"""
    if 'marquee_settings' not in st.session_state:
        st.session_state['marquee_settings'] = {
            "background": "#1E1E1E",
            "color": "#FFFFFF",
            "font-size": "14px",
            "animationDuration": "20s",
            "width": "100%",
            "lineHeight": "35px"
        }

def get_marquee_settings():
    """Get or update marquee settings from session state"""
    initialize_marquee_settings()
    return st.session_state['marquee_settings']

def update_marquee_settings_ui():
    """Update marquee settings via UI controls"""
    initialize_marquee_settings()
    st.sidebar.markdown("### 🎯 Marquee Settings")
    cols = st.sidebar.columns(2)
    with cols[0]:
        bg_color = st.color_picker("🎨 Background", 
                                  st.session_state['marquee_settings']["background"], 
                                  key="bg_color_picker")
        text_color = st.color_picker("✍️ Text", 
                                    st.session_state['marquee_settings']["color"], 
                                    key="text_color_picker")
    with cols[1]:
        font_size = st.slider("📏 Size", 10, 24, 14, key="font_size_slider")
        duration = st.slider("⏱️ Speed", 1, 20, 20, key="duration_slider")

    st.session_state['marquee_settings'].update({
        "background": bg_color,
        "color": text_color,
        "font-size": f"{font_size}px",
        "animationDuration": f"{duration}s"
    })

def display_marquee(text, settings, key_suffix=""):
    """Display marquee with given text and settings"""
    truncated_text = text[:280] + "..." if len(text) > 280 else text
    streamlit_marquee(
        content=truncated_text,
        **settings,
        key=f"marquee_{key_suffix}"
    )
    st.write("")

def get_high_info_terms(text: str, top_n=10) -> list:
    """
    Finds the top_n frequent words or bigrams (excluding some common stopwords).
    """
    stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with'])
    words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower())
    bi_grams = [' '.join(pair) for pair in zip(words, words[1:])]
    combined = words + bi_grams
    filtered = [term for term in combined if term not in stop_words and len(term.split()) <= 2]
    counter = Counter(filtered)
    return [term for term, freq in counter.most_common(top_n)]

def clean_text_for_filename(text: str) -> str:
    """
    Cleans a text so it can be used in a filename.
    """
    text = text.lower()
    text = re.sub(r'[^\w\s-]', '', text)
    words = text.split()
    # remove short or unhelpful words
    stop_short = set(['the', 'and', 'for', 'with', 'this', 'that', 'ai', 'library'])
    filtered = [w for w in words if len(w) > 3 and w not in stop_short]
    return '_'.join(filtered)[:200]


def generate_filename(prompt, response, file_type="md", max_length=200):
    """
    Generate a shortened filename by:
      1. Extracting high-info terms
      2. Creating a smaller snippet
      3. Cleaning & joining them
      4. Removing duplicates
      5. Truncating if needed
    """
    prefix = format_timestamp_prefix() + "_"
    combined_text = (prompt + " " + response)[:200]  
    info_terms = get_high_info_terms(combined_text, top_n=5)  
    snippet = (prompt[:40] + " " + response[:40]).strip()
    snippet_cleaned = clean_text_for_filename(snippet)
    
    # Combine info terms + snippet, remove duplicates
    name_parts = info_terms + [snippet_cleaned]
    seen = set()
    unique_parts = []
    for part in name_parts:
        if part not in seen:
            seen.add(part)
            unique_parts.append(part)
    full_name = '_'.join(unique_parts).strip('_')
    
    leftover_chars = max_length - len(prefix) - len(file_type) - 1
    if len(full_name) > leftover_chars:
        full_name = full_name[:leftover_chars]
    
    return f"{prefix}{full_name}.{file_type}"


def create_file(prompt, response, file_type="md"):
    """
    Create a file using the shortened filename from generate_filename().
    """
    filename = generate_filename(prompt.strip(), response.strip(), file_type)
    with open(filename, 'w', encoding='utf-8') as f:
        f.write(prompt + "\n\n" + response)
    return filename

def get_download_link(file, file_type="zip"):
    """
    Returns an HTML anchor tag for downloading the specified file (base64-encoded).
    """
    with open(file, "rb") as f:
        b64 = base64.b64encode(f.read()).decode()
    if file_type == "zip":
        return f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>'
    elif file_type == "mp3":
        return f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">🎵 Download {os.path.basename(file)}</a>'
    elif file_type == "wav":
        return f'<a href="data:audio/wav;base64,{b64}" download="{os.path.basename(file)}">🔊 Download {os.path.basename(file)}</a>'
    elif file_type == "md":
        return f'<a href="data:text/markdown;base64,{b64}" download="{os.path.basename(file)}">📝 Download {os.path.basename(file)}</a>'
    else:
        return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}</a>'

def clean_for_speech(text: str) -> str:
    """
    Cleans text to make TTS output more coherent.
    """
    text = text.replace("\n", " ")
    text = text.replace("</s>", " ")
    text = text.replace("#", "")
    text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text

async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
    text = clean_for_speech(text)
    if not text.strip():
        return None
    rate_str = f"{rate:+d}%"
    pitch_str = f"{pitch:+d}Hz"
    communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
    out_fn = generate_filename(text, text, file_type=file_format)
    await communicate.save(out_fn)
    return out_fn

def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
    return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, file_format))

def play_and_download_audio(file_path, file_type="mp3"):
    """Play audio and show a direct download link in the main area."""
    if file_path and os.path.exists(file_path):
        st.audio(file_path)
        dl_link = get_download_link(file_path, file_type=file_type)
        st.markdown(dl_link, unsafe_allow_html=True)

def save_qa_with_audio(question, answer, voice=None):
    """Save Q&A to markdown and generate audio file."""
    if not voice:
        voice = st.session_state['tts_voice']
    
    # Create markdown file
    combined_text = f"# Question\n{question}\n\n# Answer\n{answer}"
    md_file = create_file(question, answer, "md")
    
    # Generate audio file
    audio_text = f"{question}\n\nAnswer: {answer}"
    audio_file = speak_with_edge_tts(
        audio_text,
        voice=voice,
        file_format=st.session_state['audio_format']
    )
    
    return md_file, audio_file

def parse_arxiv_refs(ref_text: str):
    """
    Given a multi-line markdown with arxiv references, parse them into
    a structure: [{date, title, url, authors, summary}, ...]
    """
    if not ref_text:
        return []

    results = []
    current_paper = {}
    lines = ref_text.split('\n')
    
    for i, line in enumerate(lines):
        if line.count('|') == 2:
            # We found a new paper header line
            if current_paper:
                results.append(current_paper)
                if len(results) >= 20:
                    break
            
            try:
                header_parts = line.strip('* ').split('|')
                date = header_parts[0].strip()
                title = header_parts[1].strip()
                url_match = re.search(r'(https://arxiv.org/\S+)', line)
                url = url_match.group(1) if url_match else f"paper_{len(results)}"
                
                current_paper = {
                    'date': date,
                    'title': title,
                    'url': url,
                    'authors': '',
                    'summary': '',
                    'full_audio': None,
                    'download_base64': '',
                }
            except Exception as e:
                st.warning(f"Error parsing paper header: {str(e)}")
                current_paper = {}
                continue
        
        elif current_paper:
            # Fill authors if empty, else fill summary
            if not current_paper['authors']:
                current_paper['authors'] = line.strip('* ')
            else:
                if current_paper['summary']:
                    current_paper['summary'] += ' ' + line.strip()
                else:
                    current_paper['summary'] = line.strip()
    
    if current_paper:
        results.append(current_paper)
    
    return results[:20]

def create_paper_links_md(papers):
    """
    Creates a minimal markdown list of paper titles + arxiv links
    (and if you store PDF links, you could also include them).
    """
    lines = ["# Paper Links\n"]
    for i, p in enumerate(papers, start=1):
        # Basic link
        lines.append(f"{i}. **{p['title']}** — [Arxiv]({p['url']})")
    return "\n".join(lines)

def create_paper_audio_files(papers, input_question):
    """
    Generate TTS audio for each paper, store base64 link for stable download, 
    and attach to each paper dict.
    """
    for paper in papers:
        try:
            # Just a short version for TTS
            audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}"
            audio_text = clean_for_speech(audio_text)

            file_format = st.session_state['audio_format']
            audio_file = speak_with_edge_tts(
                audio_text, 
                voice=st.session_state['tts_voice'], 
                file_format=file_format
            )
            paper['full_audio'] = audio_file

            # Store a base64 link with consistent name
            if audio_file:
                with open(audio_file, "rb") as af:
                    b64_data = base64.b64encode(af.read()).decode()
                # We'll keep the original file's name as the stable download name
                download_filename = os.path.basename(audio_file)
                mime_type = "mpeg" if file_format == "mp3" else "wav"
                paper['download_base64'] = (
                    f'<a href="data:audio/{mime_type};base64,{b64_data}" '
                    f'download="{download_filename}">🎵 Download {download_filename}</a>'
                )

        except Exception as e:
            st.warning(f"Error processing paper {paper['title']}: {str(e)}")
            paper['full_audio'] = None
            paper['download_base64'] = ''

def display_papers(papers, marquee_settings):
    """
    Display the papers in the main area with marquee + expanders + audio.
    """
    st.write("## Research Papers")
    
    for i, paper in enumerate(papers, start=1):
        # Show marquee
        marquee_text = f"📄 {paper['title']} | 👤 {paper['authors'][:120]} | 📝 {paper['summary'][:200]}"
        display_marquee(marquee_text, marquee_settings, key_suffix=f"paper_{i}")
        
        with st.expander(f"{i}. 📄 {paper['title']}", expanded=True):
            st.markdown(f"**{paper['date']} | {paper['title']} |** [Arxiv Link]({paper['url']})")
            st.markdown(f"*Authors:* {paper['authors']}")
            st.markdown(paper['summary'])
            
            if paper.get('full_audio'):
                st.write("📚 Paper Audio")
                st.audio(paper['full_audio'])
                if paper['download_base64']:
                    st.markdown(paper['download_base64'], unsafe_allow_html=True)

def display_papers_in_sidebar(papers):
    """
    New approach: in the sidebar, mirror the paper listing
    with expanders for each paper, link to arxiv, st.audio, etc.
    """
    st.sidebar.title("🎶 Papers & Audio")
    for i, paper in enumerate(papers, start=1):
        with st.sidebar.expander(f"{i}. {paper['title']}"):
            st.markdown(f"**Arxiv:** [Link]({paper['url']})")
            if paper['full_audio']:
                st.audio(paper['full_audio'])
                if paper['download_base64']:
                    st.markdown(paper['download_base64'], unsafe_allow_html=True)
            # Show minimal text if desired:
            st.markdown(f"**Authors:** {paper['authors']}")
            if paper['summary']:
                st.markdown(f"**Summary:** {paper['summary'][:300]}...")

def create_zip_of_files(md_files, mp3_files, wav_files, input_question):
    """
    Zip up all relevant files, but limit final zip name to 20 chars.
    """
    md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
    all_files = md_files + mp3_files + wav_files
    if not all_files:
        return None

    all_content = []
    for f in all_files:
        if f.endswith('.md'):
            with open(f, 'r', encoding='utf-8') as file:
                all_content.append(file.read())
        elif f.endswith('.mp3') or f.endswith('.wav'):
            # Add some text representation
            basename = os.path.splitext(os.path.basename(f))[0]
            words = basename.replace('_', ' ')
            all_content.append(words)
    
    all_content.append(input_question)
    combined_content = " ".join(all_content)
    info_terms = get_high_info_terms(combined_content, top_n=10)
    
    timestamp = format_timestamp_prefix()
    name_text = '-'.join(term for term in info_terms[:5])  # shorter
    # Limit the final name to 20 chars (excluding .zip)
    short_zip_name = (timestamp + "_" + name_text)[:20] + ".zip"
    
    with zipfile.ZipFile(short_zip_name, 'w') as z:
        for f in all_files:
            z.write(f)
    
    return short_zip_name


# ---------------------------- 1/11/2025 - add a constitution to my arxiv system templating to build configurable personality

def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, 
                     titles_summary=True, full_audio=False):
    start = time.time()

    ai_constitution = """
    You are a talented AI coder and songwriter with a unique ability to explain scientific concepts through music with code easter eggs.. Your task is to create a song that not only entertains but also educates listeners about a specific science problem and its potential solutions. 

    (Omitted extra instructions for brevity...)
    """

    # Claude:
    client = anthropic.Anthropic(api_key=anthropic_key)
    user_input = q

    response = client.messages.create(
        model="claude-3-sonnet-20240229",
        max_tokens=1000,
        messages=[
            {"role": "user", "content": user_input}
        ])
    
    st.write("Claude's reply 🧠:")
    st.markdown(response.content[0].text)

    # Save and produce audio for Claude response
    result = response.content[0].text
    create_file(q, result)  # MD file
    md_file, audio_file = save_qa_with_audio(q, result)
    st.subheader("📝 Main Response Audio")
    play_and_download_audio(audio_file, st.session_state['audio_format'])


    # Arxiv:
    st.write("Arxiv's AI this Evening is Mixtral 8x7B MoE Instruct with 9 English Voices 🧠:")

    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    refs = client.predict(q, 20, "Semantic Search", 
                         "mistralai/Mixtral-8x7B-Instruct-v0.1",
                         api_name="/update_with_rag_md")[0]

    r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", 
                       True, api_name="/ask_llm")

    result = f"### 🔎 {q}\n\n{r2}\n\n{refs}"
    
    # Save and produce audio for second response
    md_file, audio_file = save_qa_with_audio(q, result)
    
    st.subheader("📝 Main Response Audio")
    play_and_download_audio(audio_file, st.session_state['audio_format'])

    papers = parse_arxiv_refs(refs)
    if papers:
        # 4) Create & show a minimal markdown links page before generating audio
        paper_links = create_paper_links_md(papers)
        links_file = create_file(q, paper_links, "md")
        st.markdown(paper_links)

        # Now produce audio for each paper
        create_paper_audio_files(papers, input_question=q)
        display_papers(papers, get_marquee_settings())
        
        # Also display in the sidebar as requested
        display_papers_in_sidebar(papers)
    else:
        st.warning("No papers found in the response.")

    elapsed = time.time() - start
    st.write(f"**Total Elapsed:** {elapsed:.2f} s")
    return result

def process_voice_input(text):
    if not text:
        return
        
    st.subheader("🔍 Search Results")
    result = perform_ai_lookup(
        text, 
        vocal_summary=True,
        extended_refs=False,
        titles_summary=True,
        full_audio=True
    )
    
    # Save final Q&A with audio
    md_file, audio_file = save_qa_with_audio(text, result)
    
    st.subheader("📝 Generated Files")
    st.write(f"Markdown: {md_file}")
    st.write(f"Audio: {audio_file}")
    play_and_download_audio(audio_file, st.session_state['audio_format'])

def main():
    # Update marquee settings UI
    update_marquee_settings_ui()
    marquee_settings = get_marquee_settings()

    # Initial welcome marquee
    display_marquee(st.session_state['marquee_content'], 
                    {**marquee_settings, "font-size": "28px", "lineHeight": "50px"},
                    key_suffix="welcome")

    # Main action tabs
    tab_main = st.radio("Action:", ["🎤 Voice", "📸 Media", "🔍 ArXiv", "📝 Editor"], 
                        horizontal=True)

    # Simple example usage of a Streamlit component (placeholder)
    mycomponent = components.declare_component("mycomponent", path="mycomponent")
    val = mycomponent(my_input_value="Hello")

    # Quick example - if the component returns text:
    if val:
        val_stripped = val.replace('\\n', ' ')
        edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100)
        
        run_option = st.selectbox("Model:", ["Arxiv"])
        col1, col2 = st.columns(2)
        with col1:
            autorun = st.checkbox("⚙ AutoRun", value=True)
        with col2:
            full_audio = st.checkbox("📚FullAudio", value=False)

        input_changed = (val != st.session_state.old_val)

        if autorun and input_changed:
            st.session_state.old_val = val
            st.session_state.last_query = edited_input
            perform_ai_lookup(edited_input, 
                              vocal_summary=True, 
                              extended_refs=False, 
                              titles_summary=True, 
                              full_audio=full_audio)
        else:
            if st.button("▶ Run"):
                st.session_state.old_val = val
                st.session_state.last_query = edited_input
                perform_ai_lookup(edited_input, 
                                  vocal_summary=True, 
                                  extended_refs=False, 
                                  titles_summary=True, 
                                  full_audio=full_audio)
    
    # --- Tab: ArXiv
    if tab_main == "🔍 ArXiv":
        st.subheader("🔍 Query ArXiv")
        q = st.text_input("🔍 Query:", key="arxiv_query")
    
        st.markdown("### 🎛 Options")
        vocal_summary = st.checkbox("🎙ShortAudio", value=True, key="option_vocal_summary")
        extended_refs = st.checkbox("📜LongRefs", value=False, key="option_extended_refs")
        titles_summary = st.checkbox("🔖TitlesOnly", value=True, key="option_titles_summary")
        full_audio = st.checkbox("📚FullAudio", value=False, key="option_full_audio")
        full_transcript = st.checkbox("🧾FullTranscript", value=False, key="option_full_transcript")
        
        if q and st.button("🔍Run"):
            st.session_state.last_query = q
            result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, 
                                       titles_summary=titles_summary, full_audio=full_audio)
            if full_transcript:
                create_file(q, result, "md")

    # --- Tab: Voice  
    elif tab_main == "🎤 Voice":
        st.subheader("🎤 Voice Input")
        
        # Voice and format settings
        st.markdown("### 🎤 Voice Settings")
        selected_voice = st.selectbox(
            "Select TTS Voice:",
            options=EDGE_TTS_VOICES,
            index=EDGE_TTS_VOICES.index(st.session_state['tts_voice'])
        )
        
        st.markdown("### 🔊 Audio Format")
        selected_format = st.radio(
            "Choose Audio Format:",
            options=["MP3", "WAV"],
            index=0
        )

        if selected_voice != st.session_state['tts_voice']:
            st.session_state['tts_voice'] = selected_voice
            st.rerun()
        if selected_format.lower() != st.session_state['audio_format']:
            st.session_state['audio_format'] = selected_format.lower()
            st.rerun()

        # User text
        user_text = st.text_area("💬 Message:", height=100)
        user_text = user_text.strip().replace('\n', ' ')

        if st.button("📨 Send"):
            process_voice_input(user_text)

        st.subheader("📜 Chat History")
        for c in st.session_state.chat_history:
            st.write("**You:**", c["user"])
            st.write("**Response:**", c["claude"])

    # --- Tab: Media
    elif tab_main == "📸 Media":
        st.header("📸 Media Gallery")
        tabs = st.tabs(["🎵 Audio", "🖼 Images", "🎥 Video"])  # audio first = default
        # --- Audio Tab
        with tabs[0]:
            st.subheader("🎵 Audio Files")
            audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
            if audio_files:
                for a in audio_files:
                    with st.expander(os.path.basename(a)):
                        st.audio(a)
                        ext = os.path.splitext(a)[1].replace('.', '')
                        dl_link = get_download_link(a, file_type=ext)
                        st.markdown(dl_link, unsafe_allow_html=True)
            else:
                st.write("No audio files found.")
                
        # --- Images Tab
        with tabs[1]:
            st.subheader("🖼 Image Files")
            imgs = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg")
            if imgs:
                c = st.slider("Cols", 1, 5, 3, key="cols_images")
                cols = st.columns(c)
                for i, f in enumerate(imgs):
                    with cols[i % c]:
                        st.image(Image.open(f), use_container_width=True)
            else:
                st.write("No images found.")

        # --- Video Tab
        with tabs[2]:
            st.subheader("🎥 Video Files")
            vids = glob.glob("*.mp4") + glob.glob("*.mov") + glob.glob("*.avi")
            if vids:
                for v in vids:
                    with st.expander(os.path.basename(v)):
                        st.video(v)
            else:
                st.write("No videos found.")

    # --- Tab: Editor
    elif tab_main == "📝 Editor":
        st.write("Select or create a file to edit. (Currently minimal demo)")

    st.markdown("""
    <style>
        .main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
        .stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
        .stButton>button { margin-right: 0.5rem; }
    </style>
    """, unsafe_allow_html=True)

    if st.session_state.should_rerun:
        st.session_state.should_rerun = False
        st.rerun()


if __name__ == "__main__":
    main()