File size: 20,218 Bytes
9abe9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c120d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe9e2
8c120d1
 
9abe9e2
 
 
 
 
8c120d1
9abe9e2
 
 
 
8c120d1
9abe9e2
 
 
 
 
 
8c120d1
9abe9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c120d1
 
 
 
 
 
9abe9e2
8c120d1
9abe9e2
 
8c120d1
 
 
 
 
 
 
9abe9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c120d1
9abe9e2
 
8c120d1
9abe9e2
 
 
 
 
8c120d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe9e2
 
 
 
ffd10f7
9abe9e2
 
 
ffd10f7
 
9abe9e2
 
 
 
 
 
 
 
 
ffd10f7
9abe9e2
 
ffd10f7
8c120d1
9abe9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffd10f7
 
9abe9e2
 
 
 
 
 
 
ffd10f7
 
 
9abe9e2
 
8c120d1
 
 
 
9abe9e2
 
ffd10f7
 
9abe9e2
 
 
 
 
ffd10f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c120d1
 
9abe9e2
 
 
 
 
8c120d1
 
 
 
 
 
 
 
 
 
 
 
9abe9e2
 
 
 
 
8c120d1
9abe9e2
 
 
 
 
 
 
 
 
 
8c120d1
9abe9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c120d1
9abe9e2
8c120d1
 
 
 
 
 
 
 
9abe9e2
8c120d1
 
 
9abe9e2
 
 
8c120d1
9abe9e2
 
 
 
 
 
 
 
 
 
 
8c120d1
9abe9e2
 
8c120d1
 
 
 
 
9abe9e2
8c120d1
9abe9e2
8c120d1
 
 
 
 
9abe9e2
8c120d1
 
 
 
 
 
 
9abe9e2
8c120d1
 
 
 
9abe9e2
8c120d1
 
9abe9e2
322d94b
 
 
 
 
 
 
 
 
8c120d1
322d94b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c120d1
322d94b
9abe9e2
322d94b
9abe9e2
322d94b
 
 
 
9abe9e2
322d94b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe9e2
322d94b
 
 
 
 
 
 
 
 
 
 
8c120d1
322d94b
 
 
 
 
 
 
 
 
 
 
8c120d1
322d94b
8c120d1
322d94b
 
 
 
 
 
 
 
 
 
 
9abe9e2
322d94b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c120d1
322d94b
 
 
8c120d1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts

# Available English voices
ENGLISH_VOICES = [
    "en-US-AriaNeural",      # Female, conversational
    "en-US-JennyNeural",     # Female, customer service
    "en-US-GuyNeural",       # Male, newscast
    "en-US-RogerNeural",     # Male, calm
    "en-GB-SoniaNeural",     # British female
    "en-GB-RyanNeural",      # British male
    "en-AU-NatashaNeural",   # Australian female
    "en-AU-WilliamNeural",   # Australian male
    "en-CA-ClaraNeural",     # Canadian female
    "en-CA-LiamNeural",      # Canadian male
    "en-IE-EmilyNeural",     # Irish female
    "en-IE-ConnorNeural",    # Irish male
    "en-IN-NeerjaNeural",    # Indian female
    "en-IN-PrabhatNeural",   # Indian male
]

# Core Configuration & Setup
st.set_page_config(
    page_title="ARIA Research Assistant",
    page_icon="🔬",
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a bug': 'https://huggingface.co/spaces/awacke1',
        'About': "ARIA: Academic Research Interactive Assistant"
    }
)
load_dotenv()

# API Setup
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', ''))
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', st.secrets.get('ANTHROPIC_API_KEY', ''))

openai_client = OpenAI(api_key=openai_api_key)
claude_client = anthropic.Anthropic(api_key=anthropic_key)

# Session State Management
if 'transcript_history' not in st.session_state:
    st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
    st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
    st.session_state['openai_model'] = "gpt-4-vision-preview"
if 'messages' not in st.session_state:
    st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
    st.session_state['last_voice_input'] = ""
if 'current_audio' not in st.session_state:
    st.session_state['current_audio'] = None
if 'autoplay_audio' not in st.session_state:
    st.session_state['autoplay_audio'] = True
if 'should_rerun' not in st.session_state:
    st.session_state['should_rerun'] = False
if 'autorun' not in st.session_state:
    st.session_state.autorun = True
if 'run_option' not in st.session_state:
    st.session_state.run_option = "Arxiv"
if 'last_processed_text' not in st.session_state:
    st.session_state.last_processed_text = ""

# Custom CSS
st.markdown("""
<style>
    .main {
        background: linear-gradient(135deg, #1a1a1a, #2d2d2d);
        color: #ffffff;
    }
    .stMarkdown {
        font-family: 'Helvetica Neue', sans-serif;
    }
    .stButton>button {
        background-color: #4CAF50;
        color: white;
        padding: 0.5rem 1rem;
        border-radius: 5px;
        border: none;
        transition: background-color 0.3s;
    }
    .stButton>button:hover {
        background-color: #45a049;
    }
    .audio-player {
        margin: 1rem 0;
        padding: 1rem;
        border-radius: 10px;
        background: #f5f5f5;
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
    }
    .voice-container {
        padding: 1rem;
        background: white;
        border-radius: 10px;
        margin: 1rem 0;
    }
    .text-display {
        margin: 1rem 0;
        padding: 1rem;
        background: #f9f9f9;
        border-radius: 5px;
        font-size: 1.1em;
    }
    .model-selector {
        margin: 1rem 0;
        padding: 0.5rem;
        background: #ffffff;
        border-radius: 5px;
    }
    .response-container {
        margin-top: 2rem;
        padding: 1rem;
        background: rgba(255, 255, 255, 0.05);
        border-radius: 10px;
    }
</style>
""", unsafe_allow_html=True)

def create_voice_component():
    """Create auto-searching voice recognition component"""
    return components.html(
        """
        <div style="padding: 20px; border-radius: 10px; background: #f0f2f6;">
            <div id="status" style="margin-bottom: 10px; color: #666;">Starting voice recognition...</div>
            <div id="interim" style="color: #666; min-height: 24px;"></div>
            <div id="output" style="margin-top: 10px; padding: 10px; min-height: 100px; 
                                  background: white; border-radius: 5px; white-space: pre-wrap;"></div>
            <script>
                if ('webkitSpeechRecognition' in window) {
                    const recognition = new webkitSpeechRecognition();
                    recognition.continuous = true;
                    recognition.interimResults = true;
                    
                    const status = document.getElementById('status');
                    const interim = document.getElementById('interim');
                    const output = document.getElementById('output');
                    let fullTranscript = '';
                    let lastPauseTime = Date.now();
                    let pauseThreshold = 1500;
                    
                    window.addEventListener('load', () => {
                        setTimeout(() => {
                            try {
                                recognition.start();
                                status.textContent = 'Listening...';
                            } catch (e) {
                                console.error('Start error:', e);
                                status.textContent = 'Error starting recognition';
                            }
                        }, 1000);
                    });
                    
                    recognition.onresult = (event) => {
                        let interimTranscript = '';
                        let finalTranscript = '';
                        
                        for (let i = event.resultIndex; i < event.results.length; i++) {
                            const transcript = event.results[i][0].transcript;
                            if (event.results[i].isFinal) {
                                finalTranscript += transcript + ' ';
                                lastPauseTime = Date.now();
                            } else {
                                interimTranscript += transcript;
                            }
                        }
                        
                        if (finalTranscript) {
                            fullTranscript += finalTranscript;
                            interim.textContent = '';
                            output.textContent = fullTranscript;
                            
                            window.parent.postMessage({
                                type: 'streamlit:setComponentValue',
                                value: {
                                    text: fullTranscript,
                                    trigger: 'speech'
                                },
                                dataType: 'json',
                            }, '*');
                        } else if (interimTranscript) {
                            interim.textContent = '... ' + interimTranscript;
                        }
                        
                        output.scrollTop = output.scrollHeight;
                    };
                    
                    setInterval(() => {
                        if (fullTranscript && Date.now() - lastPauseTime > pauseThreshold) {
                            if (output.dataset.lastProcessed !== fullTranscript) {
                                output.dataset.lastProcessed = fullTranscript;
                                window.parent.postMessage({
                                    type: 'streamlit:setComponentValue',
                                    value: {
                                        text: fullTranscript,
                                        trigger: 'pause'
                                    },
                                    dataType: 'json',
                                }, '*');
                            }
                        }
                    }, 500);
                    
                    recognition.onend = () => {
                        try {
                            recognition.start();
                            status.textContent = 'Listening...';
                        } catch (e) {
                            console.error('Restart error:', e);
                            status.textContent = 'Recognition stopped. Refresh to restart.';
                        }
                    };
                    
                    recognition.onerror = (event) => {
                        console.error('Recognition error:', event.error);
                        status.textContent = 'Error: ' + event.error;
                    };
                } else {
                    document.getElementById('status').textContent = 'Speech recognition not supported in this browser';
                }
            </script>
        </div>
        """,
        height=200
    )

def get_audio_autoplay_html(audio_path):
    """Create HTML for autoplaying audio with controls and download"""
    try:
        with open(audio_path, "rb") as audio_file:
            audio_bytes = audio_file.read()
            audio_b64 = base64.b64encode(audio_bytes).decode()
            return f'''
                <div class="audio-player">
                    <audio controls autoplay style="width: 100%;">
                        <source src="data:audio/mpeg;base64,{audio_b64}" type="audio/mpeg">
                        Your browser does not support the audio element.
                    </audio>
                    <div style="margin-top: 5px;">
                        <a href="data:audio/mpeg;base64,{audio_b64}" 
                           download="{os.path.basename(audio_path)}"
                           style="text-decoration: none; color: #4CAF50;">
                           ⬇️ Download Audio
                        </a>
                    </div>
                </div>
            '''
    except Exception as e:
        return f"Error loading audio: {str(e)}"

# Audio Processing Functions
def clean_for_speech(text: str) -> str:
    """Clean text for speech synthesis"""
    text = text.replace("\n", " ")
    text = text.replace("</s>", " ")
    text = text.replace("#", "")
    text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text

async def generate_audio(text, voice="en-US-AriaNeural", rate="+0%", pitch="+0Hz"):
    """Generate audio using Edge TTS with automatic playback"""
    text = clean_for_speech(text)
    if not text.strip():
        return None
    
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    output_file = f"response_{timestamp}.mp3"
    
    communicate = edge_tts.Communicate(text, voice, rate=rate, pitch=pitch)
    await communicate.save(output_file)
    
    return output_file

def render_audio_result(audio_file, title="Generated Audio"):
    """Render audio result with autoplay in Streamlit"""
    if audio_file and os.path.exists(audio_file):
        st.markdown(f"### {title}")
        st.markdown(get_audio_autoplay_html(audio_file), unsafe_allow_html=True)

async def process_voice_search(query, voice="en-US-AriaNeural"):
    """Process voice search with automatic audio using selected voice"""
    response, refs = perform_arxiv_search(query)
    
    audio_file = await generate_audio(response, voice=voice)
    st.session_state.current_audio = audio_file
    
    return response, audio_file

# Arxiv Search Functions
def perform_arxiv_search(query):
    """Enhanced Arxiv search with summary"""
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    
    refs = client.predict(
        query, 20, "Semantic Search",
        "mistralai/Mixtral-8x7B-Instruct-v0.1",
        api_name="/update_with_rag_md"
    )[0]
    
    summary = client.predict(
        query,
        "mistralai/Mixtral-8x7B-Instruct-v0.1",
        True,
        api_name="/ask_llm"
    )
    
    response = f"### Search Results for: {query}\n\n{summary}\n\n### References\n\n{refs}"
    return response, refs

def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, 
                     full_audio=False, voice="en-US-AriaNeural"):
    """Full Arxiv search with audio summaries"""
    start = time.time()
    response, refs = perform_arxiv_search(q)
    
    st.markdown(response)
    
    # Generate audio responses
    if full_audio:
        audio_file = asyncio.run(generate_audio(response, voice=voice))
        if audio_file:
            render_audio_result(audio_file, "Complete Response")
    
    if vocal_summary:
        summary_audio = asyncio.run(generate_audio(
            f"Summary of results for query: {q}",
            voice=voice
        ))
        if summary_audio:
            render_audio_result(summary_audio, "Summary")
    
    elapsed = time.time() - start
    st.write(f"**Total Elapsed:** {elapsed:.2f} s")
    
    return response
def render_search_interface():
    """Main search interface with voice recognition and model selection"""
    st.header("🔍 Voice Search & Research")

    # Get voice component value and set up model selection
    mycomponent = components.declare_component("mycomponent", path="mycomponent")
    val = mycomponent(my_input_value="Hello")

    # Show input in edit box if detected
    if val:
        val_stripped = val.replace('\n', ' ')
        edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100)
        run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"])
        
        col1, col2 = st.columns(2)
        with col1:
            autorun = st.checkbox("⚙ AutoRun", value=True)
        with col2:
            full_audio = st.checkbox("📚FullAudio", value=False, 
                                   help="Generate full audio response")

        input_changed = (val != st.session_state.get('old_val', None))

        if autorun and input_changed:
            st.session_state.old_val = val
            if run_option == "Arxiv":
                perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, 
                                titles_summary=True, full_audio=full_audio)
            else:
                if run_option == "GPT-4o":
                    process_with_gpt(edited_input)
                elif run_option == "Claude-3.5":
                    process_with_claude(edited_input)
        else:
            if st.button("▶ Run"):
                st.session_state.old_val = val
                if run_option == "Arxiv":
                    perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, 
                                    titles_summary=True, full_audio=full_audio)
                else:
                    if run_option == "GPT-4o":
                        process_with_gpt(edited_input)
                    elif run_option == "Claude-3.5":
                        process_with_claude(edited_input)

                        
def main():
    st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research")
    tab_main = st.radio("Action:", ["🎤 Voice", "📸 Media", "🔍 ArXiv", "📝 Editor"], horizontal=True)

    if tab_main == "🎤 Voice":
        render_search_interface()

    elif tab_main == "🔍 ArXiv":
        st.subheader("🔍 Query ArXiv")
        q = st.text_input("🔍 Query:")

        st.markdown("### 🎛 Options")
        vocal_summary = st.checkbox("🎙ShortAudio", value=True)
        extended_refs = st.checkbox("📜LongRefs", value=False)
        titles_summary = st.checkbox("🔖TitlesOnly", value=True)
        full_audio = st.checkbox("📚FullAudio", value=False,
                               help="Full audio of results")
        full_transcript = st.checkbox("🧾FullTranscript", value=False,
                                    help="Generate a full transcript file")

        if q and st.button("🔍Run"):
            result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, 
                                     titles_summary=titles_summary, full_audio=full_audio)
            if full_transcript:
                save_full_transcript(q, result)

        st.markdown("### Change Prompt & Re-Run")
        q_new = st.text_input("🔄 Modify Query:")
        if q_new and st.button("🔄 Re-Run with Modified Query"):
            result = perform_ai_lookup(q_new, vocal_summary=vocal_summary, extended_refs=extended_refs, 
                                     titles_summary=titles_summary, full_audio=full_audio)
            if full_transcript:
                save_full_transcript(q_new, result)

    elif tab_main == "📸 Media":
        st.header("📸 Images & 🎥 Videos")
        tabs = st.tabs(["🖼 Images", "🎥 Video"])
        
        with tabs[0]:
            imgs = glob.glob("*.png")+glob.glob("*.jpg")
            if imgs:
                c = st.slider("Cols",1,5,3)
                cols = st.columns(c)
                for i,f in enumerate(imgs):
                    with cols[i%c]:
                        st.image(Image.open(f),use_container_width=True)
                        if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
                            a = process_image(f,"Describe this image.")
                            st.markdown(a)
            else:
                st.write("No images found.")
                
        with tabs[1]:
            vids = glob.glob("*.mp4")
            if vids:
                for v in vids:
                    with st.expander(f"🎥 {os.path.basename(v)}"):
                        st.video(v)
                        if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
                            a = process_video_with_gpt(v,"Describe video.")
                            st.markdown(a)
            else:
                st.write("No videos found.")

    elif tab_main == "📝 Editor":
        if getattr(st.session_state,'current_file',None):
            st.subheader(f"Editing: {st.session_state.current_file}")
            new_text = st.text_area("✏️ Content:", st.session_state.file_content, height=300)
            if st.button("💾 Save"):
                with open(st.session_state.current_file,'w',encoding='utf-8') as f:
                    f.write(new_text)
                st.success("Updated!")
                st.session_state.should_rerun = True
        else:
            st.write("Select a file from the sidebar to edit.")

    groups, sorted_prefixes = load_files_for_sidebar()
    display_file_manager_sidebar(groups, sorted_prefixes)

    if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
        st.write("---")
        st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
        for f in groups[st.session_state.viewing_prefix]:
            fname = os.path.basename(f)
            ext = os.path.splitext(fname)[1].lower().strip('.')
            st.write(f"### {fname}")
            if ext == "md":
                content = open(f,'r',encoding='utf-8').read()
                st.markdown(content)
            elif ext == "mp3":
                st.audio(f)
            else:
                st.markdown(get_download_link(f), unsafe_allow_html=True)
        if st.button("❌ Close"):
            st.session_state.viewing_prefix = None

    if st.session_state.should_rerun:
        st.session_state.should_rerun = False
        st.rerun()