File size: 19,520 Bytes
20fc1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b97dfd
20fc1c2
 
15e14c8
20fc1c2
34595f9
 
 
 
5b97dfd
20fc1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b97dfd
20fc1c2
 
 
 
 
 
 
34595f9
5b97dfd
34595f9
20fc1c2
 
 
5b97dfd
 
 
 
 
 
 
 
 
20fc1c2
 
 
 
34595f9
 
 
 
 
 
 
 
 
 
 
 
 
20fc1c2
34595f9
5b97dfd
20fc1c2
 
34595f9
 
 
20fc1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15e14c8
20fc1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15e14c8
20fc1c2
 
 
 
 
 
 
 
15e14c8
20fc1c2
 
 
 
 
 
 
34595f9
20fc1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34595f9
20fc1c2
15e14c8
20fc1c2
 
 
15e14c8
20fc1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34595f9
5b97dfd
34595f9
20fc1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b97dfd
 
 
20fc1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34595f9
5b97dfd
34595f9
20fc1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15e14c8
20fc1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b97dfd
 
 
20fc1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34595f9
 
 
 
20fc1c2
5128b1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20fc1c2
5b97dfd
20fc1c2
34595f9
5b97dfd
 
 
 
 
 
 
 
 
 
15e14c8
 
 
 
 
 
 
5b97dfd
 
34595f9
 
5b97dfd
20fc1c2
 
 
34595f9
5128b1b
20fc1c2
 
 
 
5128b1b
 
5b97dfd
34595f9
5b97dfd
34595f9
 
 
 
 
5128b1b
20fc1c2
5128b1b
20fc1c2
 
34595f9
20fc1c2
 
5b97dfd
 
20fc1c2
 
 
5b97dfd
20fc1c2
 
5b97dfd
20fc1c2
 
 
5128b1b
20fc1c2
 
 
 
 
 
 
5128b1b
20fc1c2
5128b1b
20fc1c2
 
5128b1b
20fc1c2
34595f9
20fc1c2
 
 
 
 
5b97dfd
20fc1c2
 
5128b1b
20fc1c2
5128b1b
20fc1c2
 
 
 
 
 
6300d46
5128b1b
20fc1c2
5128b1b
20fc1c2
 
15e14c8
20fc1c2
5128b1b
20fc1c2
15e14c8
20fc1c2
 
 
 
 
5b97dfd
20fc1c2
 
 
 
 
 
 
 
 
 
34595f9
5b97dfd
34595f9
 
20fc1c2
 
34595f9
20fc1c2
 
 
 
 
 
 
 
 
 
34595f9
20fc1c2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
#!/usr/bin/env python3

import os
import re
import glob
import json
import base64
import zipfile
import random
import requests
import openai
from PIL import Image
from urllib.parse import quote

import streamlit as st
import streamlit.components.v1 as components

# (Optional) huggingface_hub usage if you do model inference
from huggingface_hub import InferenceClient


# ----------------------------
# Configurable BASE_URL
# ----------------------------
BASE_URL = "https://huggingface.co/spaces/awacke1/MermaidMarkdownDiagramEditor"

# Example placeholders
PromptPrefix = "AI-Search: "
PromptPrefix2 = "AI-Refine: "
PromptPrefix3 = "AI-JS: "

roleplaying_glossary = {
    "Core Rulebooks": {
        "Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"],
        "GURPS": ["Basic Set Characters", "Basic Set Campaigns"]
    },
    "Campaigns & Adventures": {
        "Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"]
    }
}

transhuman_glossary = {
    "Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"],
    "Cybernetics": ["Robotic Limbs", "Augmented Eyes"],
}

def process_text(text):
    st.write(f"process_text called with: {text}")

def search_arxiv(text):
    st.write(f"search_arxiv called with: {text}")

def SpeechSynthesis(text):
    st.write(f"SpeechSynthesis called with: {text}")

def process_image(image_file, prompt):
    return f"[process_image placeholder] Processing {image_file} with prompt: {prompt}"

def process_video(video_file, seconds_per_frame):
    st.write(f"[process_video placeholder] Video: {video_file}, seconds/frame: {seconds_per_frame}")

# Stub if you have a HF endpoint
API_URL = "https://huggingface-inference-endpoint-placeholder"
API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

@st.cache_resource
def InferenceLLM(prompt):
    return f"[InferenceLLM placeholder response to prompt: {prompt}]"

# ------------------------------------------
# Glossary & File Utility
# ------------------------------------------
@st.cache_resource
def display_glossary_entity(k):
    search_urls = {
        "๐Ÿš€๐ŸŒŒArXiv": lambda x: f"/?q={quote(x)}",
        "๐ŸƒAnalyst": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix)}",
        "๐Ÿ“šPyCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix2)}",
        "๐Ÿ”ฌJSCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix3)}",
        "๐Ÿ“–": lambda x: f"https://en.wikipedia.org/wiki/{quote(x)}",
        "๐Ÿ”": lambda x: f"https://www.google.com/search?q={quote(x)}",
        "๐Ÿ”Ž": lambda x: f"https://www.bing.com/search?q={quote(x)}",
        "๐ŸŽฅ": lambda x: f"https://www.youtube.com/results?search_query={quote(x)}",
        "๐Ÿฆ": lambda x: f"https://twitter.com/search?q={quote(x)}",
    }
    links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
    st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True)

def display_content_or_image(query):
    for category, term_list in transhuman_glossary.items():
        for term in term_list:
            if query.lower() in term.lower():
                st.subheader(f"Found in {category}:")
                st.write(term)
                return True
    image_path = f"images/{query}.png"
    if os.path.exists(image_path):
        st.image(image_path, caption=f"Image for {query}")
        return True
    st.warning("No matching content or image found.")
    return False

def clear_query_params():
    st.warning("Define a redirect or link without query params if you want to truly clear them.")


# -----------------------
# File Handling
# -----------------------
def load_file(file_path):
    try:
        with open(file_path, "r", encoding='utf-8') as f:
            return f.read()
    except:
        return ""

@st.cache_resource
def create_zip_of_files(files):
    zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip"
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for file in files:
            zipf.write(file)
    return zip_name

@st.cache_resource
def get_zip_download_link(zip_file):
    with open(zip_file, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'

def get_table_download_link(file_path):
    try:
        with open(file_path, 'r', encoding='utf-8') as file:
            data = file.read()
        b64 = base64.b64encode(data.encode()).decode()
        file_name = os.path.basename(file_path)
        ext = os.path.splitext(file_name)[1]
        mime_map = {
            '.txt': 'text/plain',
            '.py': 'text/plain',
            '.xlsx': 'text/plain',
            '.csv': 'text/plain',
            '.htm': 'text/html',
            '.md': 'text/markdown',
            '.wav': 'audio/wav'
        }
        mime_type = mime_map.get(ext, 'application/octet-stream')
        return f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    except:
        return ''

def get_file_size(file_path):
    return os.path.getsize(file_path)

def FileSidebar():
    all_files = glob.glob("*.md")
    all_files = [f for f in all_files if len(os.path.splitext(f)[0]) >= 5]
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)

    Files1, Files2 = st.sidebar.columns(2)
    with Files1:
        if st.button("๐Ÿ—‘ Delete All"):
            for file in all_files:
                os.remove(file)
            st.rerun()
    with Files2:
        if st.button("โฌ‡๏ธ Download"):
            zip_file = create_zip_of_files(all_files)
            st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)

    file_contents = ''
    file_name = ''
    next_action = ''

    for file in all_files:
        col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])
        with col1:
            if st.button("๐ŸŒ", key="md_"+file):
                file_contents = load_file(file)
                file_name = file
                next_action = 'md'
                st.session_state['next_action'] = next_action
        with col2:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("๐Ÿ“‚", key="open_"+file):
                file_contents = load_file(file)
                file_name = file
                next_action = 'open'
                st.session_state['lastfilename'] = file
                st.session_state['filename'] = file
                st.session_state['filetext'] = file_contents
                st.session_state['next_action'] = next_action
        with col4:
            if st.button("โ–ถ๏ธ", key="read_"+file):
                file_contents = load_file(file)
                file_name = file
                next_action = 'search'
                st.session_state['next_action'] = next_action
        with col5:
            if st.button("๐Ÿ—‘", key="delete_"+file):
                os.remove(file)
                st.rerun()

    if file_contents:
        if next_action == 'open':
            open1, open2 = st.columns([0.8, 0.2])
            with open1:
                file_name_input = st.text_input('File Name:', file_name, key='file_name_input')
                file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area')

                if st.button('๐Ÿ’พ Save File'):
                    with open(file_name_input, 'w', encoding='utf-8') as f:
                        f.write(file_content_area)
                    st.markdown(f'Saved {file_name_input} successfully.')

        elif next_action == 'search':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
            user_prompt = PromptPrefix2 + file_contents
            st.markdown(user_prompt)
            if st.button('๐Ÿ”Re-Code'):
                search_arxiv(file_contents)

        elif next_action == 'md':
            st.markdown(file_contents)
            SpeechSynthesis(file_contents)
            if st.button('๐Ÿ”Run'):
                st.write("Running GPT logic placeholder...")

# ---------------------------
# Scoring / Glossaries
# ---------------------------
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)

def generate_key(label, header, idx):
    return f"{header}_{label}_{idx}_key"

def update_score(key, increment=1):
    score_file = os.path.join(score_dir, f"{key}.json")
    if os.path.exists(score_file):
        with open(score_file, "r") as file:
            score_data = json.load(file)
    else:
        score_data = {"clicks": 0, "score": 0}
    score_data["clicks"] += increment
    score_data["score"] += increment
    with open(score_file, "w") as file:
        json.dump(score_data, file)
    return score_data["score"]

def load_score(key):
    file_path = os.path.join(score_dir, f"{key}.json")
    if os.path.exists(file_path):
        with open(file_path, "r") as file:
            score_data = json.load(file)
        return score_data["score"]
    return 0

def display_buttons_with_scores(num_columns_text):
    game_emojis = {
        "Dungeons and Dragons": "๐Ÿ‰",
        "Call of Cthulhu": "๐Ÿ™",
        "GURPS": "๐ŸŽฒ",
        "Pathfinder": "๐Ÿ—บ๏ธ",
        "Kindred of the East": "๐ŸŒ…",
        "Changeling": "๐Ÿƒ",
    }
    topic_emojis = {
        "Core Rulebooks": "๐Ÿ“š",
        "Maps & Settings": "๐Ÿ—บ๏ธ",
        "Game Mechanics & Tools": "โš™๏ธ",
        "Monsters & Adversaries": "๐Ÿ‘น",
        "Campaigns & Adventures": "๐Ÿ“œ",
        "Creatives & Assets": "๐ŸŽจ",
        "Game Master Resources": "๐Ÿ› ๏ธ",
        "Lore & Background": "๐Ÿ“–",
        "Character Development": "๐Ÿง",
        "Homebrew Content": "๐Ÿ”ง",
        "General Topics": "๐ŸŒ",
    }

    for category, games in roleplaying_glossary.items():
        category_emoji = topic_emojis.get(category, "๐Ÿ”")
        st.markdown(f"## {category_emoji} {category}")
        for game, terms in games.items():
            game_emoji = game_emojis.get(game, "๐ŸŽฎ")
            for term in terms:
                key = f"{category}_{game}_{term}".replace(' ', '_').lower()
                score = load_score(key)
                if st.button(f"{game_emoji} {category} {game} {term} {score}", key=key):
                    newscore = update_score(key.replace('?',''))
                    st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}")

# -------------------------------
# Image & Video
# -------------------------------
def display_images_and_wikipedia_summaries(num_columns=4):
    image_files = [f for f in os.listdir('.') if f.endswith('.png')]
    if not image_files:
        st.write("No PNG images found in the current directory.")
        return

    image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
    cols = st.columns(num_columns)
    col_index = 0

    for image_file in image_files_sorted:
        with cols[col_index % num_columns]:
            try:
                image = Image.open(image_file)
                st.image(image, use_column_width=True)
                k = image_file.split('.')[0]
                display_glossary_entity(k)
                image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}")
                if image_text_input:
                    response = process_image(image_file, image_text_input)
                    st.markdown(response)
            except:
                st.write(f"Could not open {image_file}")
        col_index += 1

def display_videos_and_links(num_columns=4):
    video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))]
    if not video_files:
        st.write("No MP4 or WEBM videos found in the current directory.")
        return

    video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
    cols = st.columns(num_columns)
    col_index = 0

    for video_file in video_files_sorted:
        with cols[col_index % num_columns]:
            k = video_file.split('.')[0]
            st.video(video_file, format='video/mp4', start_time=0)
            display_glossary_entity(k)
            video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}")
            if video_text_input:
                try:
                    seconds_per_frame = 10
                    process_video(video_file, seconds_per_frame)
                except ValueError:
                    st.error("Invalid input for seconds per frame!")
        col_index += 1

# --------------------------------
# MERMAID DIAGRAM
# --------------------------------
def generate_mermaid_html(mermaid_code: str) -> str:
    return f"""
    <html>
    <head>
        <script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
        <style>
            .centered-mermaid {{
                display: flex;
                justify-content: center;
                margin: 20px auto;
            }}
            .mermaid {{
                max-width: 800px;
            }}
        </style>
    </head>
    <body>
        <div class="mermaid centered-mermaid">
            {mermaid_code}
        </div>
        <script>
            mermaid.initialize({{ startOnLoad: true }});
        </script>
    </body>
    </html>
    """

def append_model_param(url: str, model_selected: bool) -> str:
    if not model_selected:
        return url
    delimiter = "&" if "?" in url else "?"
    return f"{url}{delimiter}model=1"

def inject_base_url(url: str) -> str:
    if url.startswith("http"):
        return url
    return f"{BASE_URL}{url}"

DEFAULT_MERMAID = """
flowchart LR
    U((User ๐Ÿ˜Ž)) -- "Talk ๐Ÿ—ฃ๏ธ" --> LLM[LLM Agent ๐Ÿค–\\nExtract Info]
    click U "/?q=User%20๐Ÿ˜Ž" _self
    click LLM "/?q=LLM%20Agent%20Extract%20Info" _self

    LLM -- "Query ๐Ÿ”" --> HS[Hybrid Search ๐Ÿ”Ž\\nVector+NER+Lexical]
    click HS "/?q=Hybrid%20Search%20Vector+NER+Lexical" _self

    HS -- "Reason ๐Ÿค”" --> RE[Reasoning Engine ๐Ÿ› ๏ธ\\nNeuralNetwork+Medical]
    click RE "/?q=Reasoning%20Engine%20NeuralNetwork+Medical" _self

    RE -- "Link ๐Ÿ“ก" --> KG((Knowledge Graph ๐Ÿ“š\\nOntology+GAR+RAG))
    click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" _self
"""

def main():
    st.set_page_config(page_title="Mermaid + Clickable Links with Base URL", layout="wide")

    # 1) Query Param Parsing
    query_params = st.query_params
    query_list = (query_params.get('q') or query_params.get('query') or [''])
    q_or_query = query_list[0] if query_list else ''
    if q_or_query.strip():
        search_payload = PromptPrefix + q_or_query
        st.markdown(search_payload)
        process_text(search_payload)

    if 'action' in query_params:
        action_list = query_params['action']
        if action_list:
            action = action_list[0]
            if action == 'show_message':
                st.success("Showing a message because 'action=show_message' was found in the URL.")
            elif action == 'clear':
                clear_query_params()

    if 'query' in query_params:
        query_val = query_params['query'][0]
        display_content_or_image(query_val)

    # 2) Let user pick if we want ?model=1
    st.sidebar.write("## Diagram Link Settings")
    model_selected = st.sidebar.checkbox("Append ?model=1 to each link?")

    # 3) Rebuild the clickable lines in the Mermaid code
    base_diagram = DEFAULT_MERMAID
    lines = base_diagram.strip().split("\n")
    new_lines = []
    for line in lines:
        if "click " in line and '"/?' in line:
            parts = re.split(r'click\s+\S+\s+"([^"]+)"\s+("_self")', line)
            if len(parts) == 4:
                old_url = parts[1]   # e.g. '/?q=User%20๐Ÿ˜Ž'
                # 1) Prepend base if needed
                new_url = inject_base_url(old_url)  
                # 2) Possibly add &model=1
                new_url = append_model_param(new_url, model_selected)

                # Recombine
                new_line = f"{parts[0]}\"{new_url}\" {parts[2]}"
                new_lines.append(new_line)
            else:
                new_lines.append(line)
        else:
            new_lines.append(line)

    mermaid_code = "\n".join(new_lines)

    # 4) Render the top-centered Mermaid diagram
    st.title("Mermaid Diagram with Base URL Injection")
    diagram_html = generate_mermaid_html(mermaid_code)
    components.html(diagram_html, height=400, scrolling=True)

    # 5) Two-column interface: Markdown & Mermaid
    left_col, right_col = st.columns(2)

    # Left: Markdown Editor
    with left_col:
        st.subheader("Markdown Side ๐Ÿ“")
        if "markdown_text" not in st.session_state:
            st.session_state["markdown_text"] = "## Hello!\nType some *Markdown* here.\n"
        markdown_text = st.text_area(
            "Edit Markdown:",
            value=st.session_state["markdown_text"],
            height=300
        )
        st.session_state["markdown_text"] = markdown_text

        colA, colB = st.columns(2)
        with colA:
            if st.button("๐Ÿ”„ Refresh Markdown"):
                st.write("**Markdown** content refreshed! ๐Ÿฟ")
        with colB:
            if st.button("โŒ Clear Markdown"):
                st.session_state["markdown_text"] = ""
                st.rerun()

        st.markdown("---")
        st.markdown("**Preview:**")
        st.markdown(markdown_text)

    # Right: Mermaid Editor
    with right_col:
        st.subheader("Mermaid Side ๐Ÿงœโ€โ™‚๏ธ")

        if "current_mermaid" not in st.session_state:
            st.session_state["current_mermaid"] = mermaid_code

        mermaid_input = st.text_area(
            "Edit Mermaid Code:",
            value=st.session_state["current_mermaid"],
            height=300
        )

        colC, colD = st.columns(2)
        with colC:
            if st.button("๐ŸŽจ Refresh Diagram"):
                st.session_state["current_mermaid"] = mermaid_input
                st.write("**Mermaid** diagram refreshed! ๐ŸŒˆ")
                st.rerun()
        with colD:
            if st.button("โŒ Clear Mermaid"):
                st.session_state["current_mermaid"] = ""
                st.rerun()

        st.markdown("---")
        st.markdown("**Mermaid Source:**")
        st.code(mermaid_input, language="python", line_numbers=True)

    # 6) Media Galleries
    st.markdown("---")
    st.header("Media Galleries")
    num_columns_images = st.slider("Choose Number of Image Columns", 1, 15, 5, key="num_columns_images")
    display_images_and_wikipedia_summaries(num_columns_images)

    num_columns_video = st.slider("Choose Number of Video Columns", 1, 15, 5, key="num_columns_video")
    display_videos_and_links(num_columns_video)

    showExtendedTextInterface = False
    if showExtendedTextInterface:
        # e.g. display_glossary_grid, display_buttons_with_scores, etc.
        pass

    # 7) File Sidebar
    FileSidebar()

    # 8) Random Title
    titles = [
        "๐Ÿง ๐ŸŽญ Semantic Symphonies & Episodic Encores",
        "๐ŸŒŒ๐ŸŽผ AI Rhythms of Memory Lane",
        "๐ŸŽญ๐ŸŽ‰ Cognitive Crescendos & Neural Harmonies",
        "๐Ÿง ๐ŸŽบ Mnemonic Melodies & Synaptic Grooves",
        "๐ŸŽผ๐ŸŽธ Straight Outta Cognition",
        "๐Ÿฅ๐ŸŽป Jazzy Jambalaya of AI Memories",
        "๐Ÿฐ Semantic Soul & Episodic Essence",
        "๐Ÿฅ๐ŸŽป The Music Of AI's Mind"
    ]
    st.markdown(f"**{random.choice(titles)}**")


if __name__ == "__main__":
    main()