File size: 25,631 Bytes
3cbe462
 
 
 
 
 
8aa93ff
3cbe462
 
8aa93ff
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa93ff
 
 
 
 
 
 
 
 
3cbe462
 
8aa93ff
 
 
3cbe462
 
 
 
 
 
 
 
 
8aa93ff
3cbe462
 
 
 
 
 
 
8aa93ff
3cbe462
 
 
 
 
 
 
 
 
8aa93ff
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa93ff
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1ca1c
3cbe462
 
 
 
 
 
 
 
 
 
 
8aa93ff
3cbe462
 
 
 
 
 
 
 
 
8aa93ff
ec1ca1c
3cbe462
 
 
 
 
 
 
 
 
8aa93ff
 
 
3cbe462
 
ec1ca1c
3cbe462
 
 
 
 
 
8aa93ff
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1ca1c
8aa93ff
 
ec1ca1c
3cbe462
8aa93ff
 
3cbe462
 
 
8aa93ff
3cbe462
8aa93ff
3cbe462
 
 
8aa93ff
3cbe462
 
 
8aa93ff
 
 
 
3cbe462
 
 
 
 
8aa93ff
 
3cbe462
8aa93ff
3cbe462
 
 
 
8aa93ff
 
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa93ff
3cbe462
8aa93ff
3cbe462
 
 
8aa93ff
 
 
 
3cbe462
 
 
 
8aa93ff
3cbe462
 
 
 
 
 
 
 
 
 
 
 
8aa93ff
3cbe462
 
 
 
 
8aa93ff
3cbe462
 
 
 
 
 
 
 
 
 
 
8aa93ff
 
 
 
3cbe462
8aa93ff
3cbe462
 
 
 
 
8aa93ff
3cbe462
8aa93ff
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1ca1c
3cbe462
 
 
8aa93ff
3cbe462
 
 
 
 
 
ec1ca1c
 
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1ca1c
3cbe462
 
 
 
 
 
ec1ca1c
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa93ff
3cbe462
 
 
 
8aa93ff
 
 
 
 
 
 
 
3cbe462
 
 
 
 
 
8aa93ff
 
 
 
 
3cbe462
8aa93ff
3cbe462
 
 
 
 
 
 
 
8aa93ff
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
8aa93ff
3cbe462
8aa93ff
3cbe462
8aa93ff
3cbe462
 
 
 
 
 
 
8aa93ff
3cbe462
 
 
 
 
8aa93ff
3cbe462
 
 
 
 
8aa93ff
 
 
 
 
 
 
 
 
 
 
 
 
3cbe462
8aa93ff
3cbe462
ec1ca1c
3cbe462
 
 
ec1ca1c
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa93ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbe462
8aa93ff
3cbe462
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
import streamlit as st
import anthropic
import openai
import base64
import os
import re
import asyncio
from datetime import datetime
from gradio_client import Client
from collections import defaultdict
import edge_tts

# ๐ŸŽฏ 1. Core Configuration & Setup
st.set_page_config(
    page_title="๐ŸšฒBikeAI๐Ÿ† Claude/GPT Research",
    page_icon="๐Ÿšฒ๐Ÿ†",
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a bug': 'https://huggingface.co/spaces/awacke1',
        'About': "๐ŸšฒBikeAI๐Ÿ† Claude/GPT Research AI"
    }
)
st.markdown("""
    <style>
        .main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
        .stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
        .stButton>button {
            margin-right: 0.5rem;
        }
    </style>
    """, unsafe_allow_html=True)

# ๐Ÿ”‘ 2. API Setup & Clients
from dotenv import load_dotenv
load_dotenv()

openai_api_key = os.getenv('OPENAI_API_KEY', "")
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
if 'OPENAI_API_KEY' in st.secrets:
    openai_api_key = st.secrets['OPENAI_API_KEY']
if 'ANTHROPIC_API_KEY' in st.secrets:
    anthropic_key = st.secrets["ANTHROPIC_API_KEY"]

openai.api_key = openai_api_key
claude_client = anthropic.Anthropic(api_key=anthropic_key)
openai_client = openai  # Using OpenAI directly

# ๐Ÿ“ 3. Session State Management
if 'transcript_history' not in st.session_state:
    st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
    st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
    st.session_state['openai_model'] = "gpt-4"  # Update as needed
if 'messages' not in st.session_state:
    st.session_state['messages'] = []
if 'viewing_prefix' not in st.session_state:
    st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
    st.session_state['should_rerun'] = False
if 'old_val' not in st.session_state:
    st.session_state['old_val'] = None

# ๐Ÿง  4. High-Information Content Extraction
def get_high_info_terms(text: str) -> list:
    """Extract high-information terms from text, including key phrases."""
    stop_words = set([
        'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with',
        'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were',
        'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would',
        'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these',
        'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who',
        'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most',
        'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there'
    ])

    key_phrases = [
        'artificial intelligence', 'machine learning', 'deep learning', 'neural network',
        'personal assistant', 'natural language', 'computer vision', 'data science',
        'reinforcement learning', 'knowledge graph', 'semantic search', 'time series',
        'large language model', 'transformer model', 'attention mechanism',
        'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology',
        'cognitive science', 'human computer', 'decision making', 'arxiv search',
        'research paper', 'scientific study', 'empirical analysis'
    ]

    # Identify key phrases
    preserved_phrases = []
    lower_text = text.lower()
    for phrase in key_phrases:
        if phrase in lower_text:
            preserved_phrases.append(phrase)
            text = text.replace(phrase, '')

    # Extract individual words
    words = re.findall(r'\b\w+(?:-\w+)*\b', text)
    high_info_words = [
        word.lower() for word in words 
        if len(word) > 3
        and word.lower() not in stop_words
        and not word.isdigit()
        and any(c.isalpha() for c in word)
    ]

    all_terms = preserved_phrases + high_info_words
    seen = set()
    unique_terms = []
    for term in all_terms:
        if term not in seen:
            seen.add(term)
            unique_terms.append(term)

    max_terms = 5
    return unique_terms[:max_terms]

def clean_text_for_filename(text: str) -> str:
    """Remove punctuation and short filler words, return a compact string."""
    text = text.lower()
    text = re.sub(r'[^\w\s-]', '', text)
    words = text.split()
    stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about'])
    filtered = [w for w in words if len(w)>3 and w not in stop_short]
    return '_'.join(filtered)[:200]

# ๐Ÿ“ 5. File Operations
def generate_filename(prompt, response, file_type="md"):
    """
    Generate filename with meaningful terms and short dense clips from prompt & response.
    The filename should be about 150 chars total, include high-info terms, and a clipped snippet.
    """
    prefix = datetime.now().strftime("%y%m_%H%M") + "_"
    combined = (prompt + " " + response).strip()
    info_terms = get_high_info_terms(combined)
    
    # Include a short snippet from prompt and response
    snippet = (prompt[:100] + " " + response[:100]).strip()
    snippet_cleaned = clean_text_for_filename(snippet)
    
    # Combine info terms and snippet
    name_parts = info_terms + [snippet_cleaned]
    full_name = '_'.join(name_parts)

    # Trim to ~150 chars
    if len(full_name) > 150:
        full_name = full_name[:150]
    
    filename = f"{prefix}{full_name}.{file_type}"
    return filename

def create_file(prompt, response, file_type="md"):
    """Create file with an intelligent naming scheme."""
    filename = generate_filename(prompt.strip(), response.strip(), file_type)
    with open(filename, 'w', encoding='utf-8') as f:
        f.write(prompt + "\n\n" + response)
    return filename

def get_download_link(file):
    """Generate download link for file"""
    with open(file, "rb") as f:
        b64 = base64.b64encode(f.read()).decode()
    return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">๐Ÿ“‚ Download {os.path.basename(file)}</a>'

# ๐Ÿ”Š 6. Audio Processing
def clean_for_speech(text: str) -> str:
    """Clean text for speech synthesis"""
    text = text.replace("\n", " ")
    text = text.replace("</s>", " ")
    text = text.replace("#", "")
    text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text

async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, out_fn="temp.mp3"):
    """Generate audio using Edge TTS (async)"""
    text = clean_for_speech(text)
    if not text.strip():
        return None
    rate_str = f"{rate:+d}%"
    pitch_str = f"{pitch:+d}Hz"
    communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
    await communicate.save(out_fn)
    return out_fn

def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, out_fn="temp.mp3"):
    """Wrapper for Edge TTS generation (sync)"""
    return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, out_fn))

def play_and_download_audio(file_path):
    """Play and provide a download link for audio"""
    if file_path and os.path.exists(file_path):
        st.audio(file_path)
        dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
        st.markdown(dl_link, unsafe_allow_html=True)

def auto_play_audio(file_path):
    """Embeds an <audio> tag with autoplay + controls + a download link."""
    if not file_path or not os.path.exists(file_path):
        return
    with open(file_path, "rb") as f:
        b64_data = base64.b64encode(f.read()).decode("utf-8")
    filename = os.path.basename(file_path)
    st.markdown(f"""
    <audio controls autoplay>
        <source src="data:audio/mpeg;base64,{b64_data}" type="audio/mpeg">
        Your browser does not support the audio element.
    </audio>
    <br/>
    <a href="data:audio/mpeg;base64,{b64_data}" download="{filename}">
        Download {filename}
    </a>
    """, unsafe_allow_html=True)

def generate_audio_filename(query, title, summary):
    """
    Generate a specialized MP3 filename using query + title + summary.
    Example: "2310_1205_query_title_summary.mp3"
    """
    combined = (query + " " + title + " " + summary).strip().lower()
    combined = re.sub(r'[^\w\s-]', '', combined)  # Remove special characters
    combined = "_".join(combined.split())[:80]    # Limit length
    prefix = datetime.now().strftime("%y%m_%H%M")
    return f"{prefix}_{combined}.mp3"

# ๐ŸŽฌ 7. Media Processing
def process_image(image_path, user_prompt):
    """Process image with GPT-4V"""
    with open(image_path, "rb") as imgf:
        image_data = imgf.read()
    b64img = base64.b64encode(image_data).decode("utf-8")
    resp = openai_client.ChatCompletion.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": [
                {"type": "text", "text": user_prompt},
                {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
            ]}
        ],
        temperature=0.0,
    )
    return resp.choices[0].message.content

def process_audio_with_whisper(audio_path):
    """Process audio with Whisper"""
    with open(audio_path, "rb") as f:
        transcription = openai_client.Audio.transcriptions.create(model="whisper-1", file=f)
    st.session_state.messages.append({"role": "user", "content": transcription.text})
    return transcription.text

def process_video(video_path, seconds_per_frame=1):
    """Extract frames from video"""
    import cv2
    vid = cv2.VideoCapture(video_path)
    total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vid.get(cv2.CAP_PROP_FPS)
    skip = int(fps * seconds_per_frame)
    frames_b64 = []
    for i in range(0, total, skip):
        vid.set(cv2.CAP_PROP_POS_FRAMES, i)
        ret, frame = vid.read()
        if not ret:
            break
        _, buf = cv2.imencode(".jpg", frame)
        frames_b64.append(base64.b64encode(buf).decode("utf-8"))
    vid.release()
    return frames_b64

def process_video_with_gpt(video_path, prompt):
    """Analyze video frames with GPT-4V"""
    frames = process_video(video_path)
    resp = openai_client.ChatCompletion.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role": "system", "content": "Analyze video frames."},
            {"role": "user", "content": [
                {"type": "text", "text": prompt},
                *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
            ]}
        ]
    )
    return resp.choices[0].message.content

# ๐Ÿค– 8. AI Model Integration
def save_full_transcript(query, text):
    """Save full transcript of Arxiv results as a file."""
    create_file(query, text, "md")

def process_with_gpt(text):
    """Process text with GPT-4"""
    if not text:
        return
    st.session_state.messages.append({"role":"user","content":text})
    with st.chat_message("user"):
        st.markdown(text)
    with st.chat_message("assistant"):
        c = openai_client.ChatCompletion.create(
            model=st.session_state["openai_model"],
            messages=st.session_state.messages,
            stream=False
        )
        ans = c.choices[0].message.content
        st.write("GPT-4: " + ans)
        create_file(text, ans, "md")
        st.session_state.messages.append({"role":"assistant","content":ans})
    return ans

def process_with_claude(text):
    """Process text with Claude"""
    if not text:
        return
    with st.chat_message("user"):
        st.markdown(text)
    with st.chat_message("assistant"):
        r = claude_client.completions.create(
            prompt=text,
            model="claude-3",
            max_tokens=1000
        )
        ans = r['completion']
        st.write("Claude-3.5: " + ans)
        create_file(text, ans, "md")
        st.session_state.chat_history.append({"user":text,"claude":ans})
    return ans

# ๐Ÿ“‚ 9. File Management
def create_zip_of_files(md_files, mp3_files):
    """Create zip with intelligent naming"""
    md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
    all_files = md_files + mp3_files
    if not all_files:
        return None

    # Collect content for high-info term extraction
    all_content = []
    for f in all_files:
        if f.endswith('.md'):
            with open(f, 'r', encoding='utf-8') as file:
                all_content.append(file.read())
        elif f.endswith('.mp3'):
            all_content.append(os.path.basename(f))
    
    combined_content = " ".join(all_content)
    info_terms = get_high_info_terms(combined_content)
    
    timestamp = datetime.now().strftime("%y%m_%H%M")
    name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3])
    zip_name = f"{timestamp}_{name_text}.zip"
    
    with zipfile.ZipFile(zip_name,'w') as z:
        for f in all_files:
            z.write(f)
    
    return zip_name

def load_files_for_sidebar():
    """Load and group files for sidebar display"""
    md_files = glob.glob("*.md")
    mp3_files = glob.glob("*.mp3")
    md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']

    all_files = md_files + mp3_files
    groups = defaultdict(list)
    for f in all_files:
        fname = os.path.basename(f)
        prefix = fname[:10]  # e.g., "2310_1205_"
        groups[prefix].append(f)

    for prefix in groups:
        groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True)

    sorted_prefixes = sorted(groups.keys(), 
                             key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), 
                             reverse=True)
    return groups, sorted_prefixes

def extract_keywords_from_md(files):
    """Extract keywords from markdown files"""
    text = ""
    for f in files:
        if f.endswith(".md"):
            c = open(f,'r',encoding='utf-8').read()
            text += " " + c
    return get_high_info_terms(text)

def display_file_manager_sidebar(groups, sorted_prefixes):
    """Display file manager in sidebar"""
    st.sidebar.title("๐ŸŽต Audio & Docs Manager")

    all_md = []
    all_mp3 = []
    for prefix in groups:
        for f in groups[prefix]:
            if f.endswith(".md"):
                all_md.append(f)
            elif f.endswith(".mp3"):
                all_mp3.append(f)

    top_bar = st.sidebar.columns(3)
    with top_bar[0]:
        if st.button("๐Ÿ—‘ DelAllMD"):
            for f in all_md:
                os.remove(f)
            st.session_state.should_rerun = True
    with top_bar[1]:
        if st.button("๐Ÿ—‘ DelAllMP3"):
            for f in all_mp3:
                os.remove(f)
            st.session_state.should_rerun = True
    with top_bar[2]:
        if st.button("โฌ‡๏ธ ZipAll"):
            z = create_zip_of_files(all_md, all_mp3)
            if z:
                st.sidebar.markdown(get_download_link(z), unsafe_allow_html=True)

    for prefix in sorted_prefixes:
        files = groups[prefix]
        kw = extract_keywords_from_md(files)
        keywords_str = " ".join(kw) if kw else "No Keywords"
        with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True):
            c1,c2 = st.columns(2)
            with c1:
                if st.button("๐Ÿ‘€ViewGrp", key="view_group_"+prefix):
                    st.session_state.viewing_prefix = prefix
            with c2:
                if st.button("๐Ÿ—‘DelGrp", key="del_group_"+prefix):
                    for f in files:
                        os.remove(f)
                    st.success(f"Deleted group {prefix}!")
                    st.session_state.should_rerun = True

            for f in files:
                fname = os.path.basename(f)
                ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
                st.write(f"**{fname}** - {ctime}")

# ๐ŸŽฏ 10. Main Application
def main():
    st.sidebar.markdown("### ๐ŸšฒBikeAI๐Ÿ† Multi-Agent Research")
    tab_main = st.radio("Action:", ["๐ŸŽค Voice","๐Ÿ“ธ Media","๐Ÿ” ArXiv","๐Ÿ“ Editor"], horizontal=True)

    # Placeholder for custom component if needed
    # mycomponent = components.declare_component("mycomponent", path="mycomponent")
    # val = mycomponent(my_input_value="Hello")

    # Example input handling
    # if val:
    #     # Handle custom component input
    #     pass

    if tab_main == "๐Ÿ” ArXiv":
        st.subheader("๐Ÿ” Query ArXiv")
        q = st.text_input("๐Ÿ” Query:")

        st.markdown("### ๐ŸŽ› Options")
        full_audio = st.checkbox("๐Ÿ“š Full Audio", value=False, help="Generate full audio response")
        full_transcript = st.checkbox("๐Ÿงพ Full Transcript", value=False, help="Generate a full transcript file")

        if q and st.button("๐Ÿ” Run Query"):
            perform_ai_lookup(q)
            if full_transcript:
                create_file(q, "Full transcript generated.", "md")  # Customize as needed

    elif tab_main == "๐ŸŽค Voice":
        st.subheader("๐ŸŽค Voice Input")
        user_text = st.text_area("๐Ÿ’ฌ Message:", height=100)
        user_text = user_text.strip().replace('\n', ' ')
        if st.button("๐Ÿ“จ Send"):
            process_with_gpt(user_text)
        st.subheader("๐Ÿ“œ Chat History")
        t1, t2 = st.tabs(["Claude History","GPT-4 History"])
        with t1:
            for c in st.session_state.chat_history:
                st.write("**You:**", c["user"])
                st.write("**Claude:**", c["claude"])
        with t2:
            for m in st.session_state.messages:
                with st.chat_message(m["role"]):
                    st.markdown(m["content"])

    elif tab_main == "๐Ÿ“ธ Media":
        st.header("๐Ÿ“ธ Images & ๐ŸŽฅ Videos")
        tabs = st.tabs(["๐Ÿ–ผ Images", "๐ŸŽฅ Video"])
        with tabs[0]:
            imgs = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg")
            if imgs:
                cols = st.columns(st.slider("Cols", 1, 5, 3))
                for i, f in enumerate(imgs):
                    with cols[i % len(cols)]:
                        st.image(Image.open(f), use_container_width=True)
                        if st.button(f"๐Ÿ‘€ Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
                            a = process_image(f, "Describe this image.")
                            st.markdown(a)
            else:
                st.write("No images found.")
        with tabs[1]:
            vids = glob.glob("*.mp4") + glob.glob("*.avi") + glob.glob("*.mov")
            if vids:
                for v in vids:
                    with st.expander(f"๐ŸŽฅ {os.path.basename(v)}"):
                        st.video(v)
                        if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
                            a = process_video_with_gpt(v, "Describe this video.")
                            st.markdown(a)
            else:
                st.write("No videos found.")

    elif tab_main == "๐Ÿ“ Editor":
        st.subheader("๐Ÿ“ File Editor")
        # Example editor logic: list markdown files and allow editing
        md_files = glob.glob("*.md")
        if md_files:
            selected_file = st.selectbox("Select a file to edit:", md_files)
            with st.form("edit_form"):
                new_content = st.text_area("โœ๏ธ Content:", open(selected_file, 'r', encoding='utf-8').read(), height=300)
                submitted = st.form_submit_button("๐Ÿ’พ Save")
                if submitted:
                    with open(selected_file, 'w', encoding='utf-8') as f:
                        f.write(new_content)
                    st.success(f"Updated {selected_file}!")
                    st.session_state.should_rerun = True
        else:
            st.write("No markdown files available to edit.")

    # File manager in sidebar
    groups, sorted_prefixes = load_files_for_sidebar()
    display_file_manager_sidebar(groups, sorted_prefixes)

    # If user clicked "view group"
    if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
        st.write("---")
        st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
        for f in groups[st.session_state.viewing_prefix]:
            fname = os.path.basename(f)
            ext = os.path.splitext(fname)[1].lower().strip('.')
            st.write(f"### {fname}")
            if ext == "md":
                content = open(f, 'r', encoding='utf-8').read()
                st.markdown(content)
            elif ext == "mp3":
                st.audio(f)
            else:
                st.markdown(get_download_link(f), unsafe_allow_html=True)
        if st.button("โŒ Close"):
            st.session_state.viewing_prefix = None

    if st.session_state.should_rerun:
        st.session_state.should_rerun = False
        st.experimental_rerun()

def parse_arxiv_papers(ref_text: str):
    """
    Splits the references into paper-level chunks.
    Each paper starts with a number followed by a parenthesis, e.g., "1) [Title (Year)] Summary..."
    Returns a list of dictionaries with 'title', 'summary', and 'year'.
    Limits to 20 papers.
    """
    # Split based on patterns like "1) ", "2) ", etc.
    chunks = re.split(r'\n?\d+\)\s+', ref_text)
    # Remove any empty strings resulting from split
    chunks = [chunk.strip() for chunk in chunks if chunk.strip()]
    papers = []
    for chunk in chunks[:20]:
        # Extract title within brackets if present
        title_match = re.search(r'\[([^\]]+)\]', chunk)
        title = title_match.group(1).strip() if title_match else "No Title"
        
        # Extract year (assuming it's a 4-digit number within the title or summary)
        year_match = re.search(r'\b(20\d{2})\b', chunk)
        year = int(year_match.group(1)) if year_match else None
        
        # The entire chunk is considered the summary
        summary = chunk
        
        papers.append({
            'title': title,
            'summary': summary,
            'year': year
        })
    return papers

def perform_ai_lookup(q):
    """
    Performs the Arxiv search and handles the processing of results.
    Generates audio files for each paper (if year is 2023 or 2024).
    """
    st.write(f"## Query: {q}")

    # 1) Query the HF RAG pipeline
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    refs = client.predict(q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0]
    r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm")

    # 2) Combine for final text output
    result = f"### ๐Ÿ”Ž {q}\n\n{r2}\n\n{refs}"
    st.markdown(result)

    # 3) Parse references into papers
    papers = parse_arxiv_papers(refs)

    # 4) Display each paper and generate audio if applicable
    st.write("## Individual Papers (Up to 20)")
    for idx, paper in enumerate(papers):
        year_str = paper["year"] if paper["year"] else "Unknown Year"
        st.markdown(f"**Paper #{idx+1}: {paper['title']}**  \n*Year:* {year_str}")
        st.markdown(f"*Summary:* {paper['summary']}")
        st.write("---")

        # Generate TTS if year is 2023 or 2024
        if paper["year"] in [2023, 2024]:
            # Combine title and summary for TTS
            tts_text = f"Title: {paper['title']}. Summary: {paper['summary']}"
            # Generate a specialized filename
            mp3_filename = generate_audio_filename(q, paper['title'], paper['summary'])
            # Generate audio using Edge TTS
            temp_mp3 = speak_with_edge_tts(tts_text, out_fn=mp3_filename)
            if temp_mp3 and os.path.exists(mp3_filename):
                # Embed the audio player with auto-play and download link
                auto_play_audio(mp3_filename)

    # Optionally save the full transcript
    st.write("### Transcript")
    st.markdown(result)
    create_file(q, result, "md")

def process_with_gpt(text):
    """Process text with GPT-4"""
    if not text:
        return
    st.session_state.messages.append({"role":"user","content":text})
    with st.chat_message("user"):
        st.markdown(text)
    with st.chat_message("assistant"):
        c = openai_client.ChatCompletion.create(
            model=st.session_state["openai_model"],
            messages=st.session_state.messages,
            stream=False
        )
        ans = c.choices[0].message.content
        st.write("GPT-4: " + ans)
        create_file(text, ans, "md")
        st.session_state.messages.append({"role":"assistant","content":ans})
    return ans

def process_with_claude(text):
    """Process text with Claude"""
    if not text:
        return
    with st.chat_message("user"):
        st.markdown(text)
    with st.chat_message("assistant"):
        r = claude_client.completions.create(
            prompt=text,
            model="claude-3",
            max_tokens=1000
        )
        ans = r['completion']
        st.write("Claude-3.5: " + ans)
        create_file(text, ans, "md")
        st.session_state.chat_history.append({"user":text,"claude":ans})
    return ans

# Run the app
if __name__ == "__main__":
    main()