Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 23,088 Bytes
9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 ffd10f7 9abe9e2 ffd10f7 9abe9e2 ffd10f7 9abe9e2 ffd10f7 8c120d1 9abe9e2 ffd10f7 9abe9e2 ffd10f7 9abe9e2 8c120d1 9abe9e2 ffd10f7 9abe9e2 ffd10f7 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 9abe9e2 8c120d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
# Available English voices
ENGLISH_VOICES = [
"en-US-AriaNeural", # Female, conversational
"en-US-JennyNeural", # Female, customer service
"en-US-GuyNeural", # Male, newscast
"en-US-RogerNeural", # Male, calm
"en-GB-SoniaNeural", # British female
"en-GB-RyanNeural", # British male
"en-AU-NatashaNeural", # Australian female
"en-AU-WilliamNeural", # Australian male
"en-CA-ClaraNeural", # Canadian female
"en-CA-LiamNeural", # Canadian male
"en-IE-EmilyNeural", # Irish female
"en-IE-ConnorNeural", # Irish male
"en-IN-NeerjaNeural", # Indian female
"en-IN-PrabhatNeural", # Indian male
]
# Core Configuration & Setup
st.set_page_config(
page_title="ARIA Research Assistant",
page_icon="🔬",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "ARIA: Academic Research Interactive Assistant"
}
)
load_dotenv()
# API Setup
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', ''))
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', st.secrets.get('ANTHROPIC_API_KEY', ''))
openai_client = OpenAI(api_key=openai_api_key)
claude_client = anthropic.Anthropic(api_key=anthropic_key)
# Session State Management
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
st.session_state['openai_model'] = "gpt-4-vision-preview"
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'current_audio' not in st.session_state:
st.session_state['current_audio'] = None
if 'autoplay_audio' not in st.session_state:
st.session_state['autoplay_audio'] = True
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'autorun' not in st.session_state:
st.session_state.autorun = True
if 'run_option' not in st.session_state:
st.session_state.run_option = "Arxiv"
if 'last_processed_text' not in st.session_state:
st.session_state.last_processed_text = ""
# Custom CSS
st.markdown("""
<style>
.main {
background: linear-gradient(135deg, #1a1a1a, #2d2d2d);
color: #ffffff;
}
.stMarkdown {
font-family: 'Helvetica Neue', sans-serif;
}
.stButton>button {
background-color: #4CAF50;
color: white;
padding: 0.5rem 1rem;
border-radius: 5px;
border: none;
transition: background-color 0.3s;
}
.stButton>button:hover {
background-color: #45a049;
}
.audio-player {
margin: 1rem 0;
padding: 1rem;
border-radius: 10px;
background: #f5f5f5;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.voice-container {
padding: 1rem;
background: white;
border-radius: 10px;
margin: 1rem 0;
}
.text-display {
margin: 1rem 0;
padding: 1rem;
background: #f9f9f9;
border-radius: 5px;
font-size: 1.1em;
}
.model-selector {
margin: 1rem 0;
padding: 0.5rem;
background: #ffffff;
border-radius: 5px;
}
.response-container {
margin-top: 2rem;
padding: 1rem;
background: rgba(255, 255, 255, 0.05);
border-radius: 10px;
}
</style>
""", unsafe_allow_html=True)
def create_voice_component():
"""Create auto-searching voice recognition component"""
return components.html(
"""
<div style="padding: 20px; border-radius: 10px; background: #f0f2f6;">
<div id="status" style="margin-bottom: 10px; color: #666;">Starting voice recognition...</div>
<div id="interim" style="color: #666; min-height: 24px;"></div>
<div id="output" style="margin-top: 10px; padding: 10px; min-height: 100px;
background: white; border-radius: 5px; white-space: pre-wrap;"></div>
<script>
if ('webkitSpeechRecognition' in window) {
const recognition = new webkitSpeechRecognition();
recognition.continuous = true;
recognition.interimResults = true;
const status = document.getElementById('status');
const interim = document.getElementById('interim');
const output = document.getElementById('output');
let fullTranscript = '';
let lastPauseTime = Date.now();
let pauseThreshold = 1500;
window.addEventListener('load', () => {
setTimeout(() => {
try {
recognition.start();
status.textContent = 'Listening...';
} catch (e) {
console.error('Start error:', e);
status.textContent = 'Error starting recognition';
}
}, 1000);
});
recognition.onresult = (event) => {
let interimTranscript = '';
let finalTranscript = '';
for (let i = event.resultIndex; i < event.results.length; i++) {
const transcript = event.results[i][0].transcript;
if (event.results[i].isFinal) {
finalTranscript += transcript + ' ';
lastPauseTime = Date.now();
} else {
interimTranscript += transcript;
}
}
if (finalTranscript) {
fullTranscript += finalTranscript;
interim.textContent = '';
output.textContent = fullTranscript;
window.parent.postMessage({
type: 'streamlit:setComponentValue',
value: {
text: fullTranscript,
trigger: 'speech'
},
dataType: 'json',
}, '*');
} else if (interimTranscript) {
interim.textContent = '... ' + interimTranscript;
}
output.scrollTop = output.scrollHeight;
};
setInterval(() => {
if (fullTranscript && Date.now() - lastPauseTime > pauseThreshold) {
if (output.dataset.lastProcessed !== fullTranscript) {
output.dataset.lastProcessed = fullTranscript;
window.parent.postMessage({
type: 'streamlit:setComponentValue',
value: {
text: fullTranscript,
trigger: 'pause'
},
dataType: 'json',
}, '*');
}
}
}, 500);
recognition.onend = () => {
try {
recognition.start();
status.textContent = 'Listening...';
} catch (e) {
console.error('Restart error:', e);
status.textContent = 'Recognition stopped. Refresh to restart.';
}
};
recognition.onerror = (event) => {
console.error('Recognition error:', event.error);
status.textContent = 'Error: ' + event.error;
};
} else {
document.getElementById('status').textContent = 'Speech recognition not supported in this browser';
}
</script>
</div>
""",
height=200
)
def get_audio_autoplay_html(audio_path):
"""Create HTML for autoplaying audio with controls and download"""
try:
with open(audio_path, "rb") as audio_file:
audio_bytes = audio_file.read()
audio_b64 = base64.b64encode(audio_bytes).decode()
return f'''
<div class="audio-player">
<audio controls autoplay style="width: 100%;">
<source src="data:audio/mpeg;base64,{audio_b64}" type="audio/mpeg">
Your browser does not support the audio element.
</audio>
<div style="margin-top: 5px;">
<a href="data:audio/mpeg;base64,{audio_b64}"
download="{os.path.basename(audio_path)}"
style="text-decoration: none; color: #4CAF50;">
⬇️ Download Audio
</a>
</div>
</div>
'''
except Exception as e:
return f"Error loading audio: {str(e)}"
# Audio Processing Functions
def clean_for_speech(text: str) -> str:
"""Clean text for speech synthesis"""
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
async def generate_audio(text, voice="en-US-AriaNeural", rate="+0%", pitch="+0Hz"):
"""Generate audio using Edge TTS with automatic playback"""
text = clean_for_speech(text)
if not text.strip():
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = f"response_{timestamp}.mp3"
communicate = edge_tts.Communicate(text, voice, rate=rate, pitch=pitch)
await communicate.save(output_file)
return output_file
def render_audio_result(audio_file, title="Generated Audio"):
"""Render audio result with autoplay in Streamlit"""
if audio_file and os.path.exists(audio_file):
st.markdown(f"### {title}")
st.markdown(get_audio_autoplay_html(audio_file), unsafe_allow_html=True)
async def process_voice_search(query, voice="en-US-AriaNeural"):
"""Process voice search with automatic audio using selected voice"""
response, refs = perform_arxiv_search(query)
audio_file = await generate_audio(response, voice=voice)
st.session_state.current_audio = audio_file
return response, audio_file
# Arxiv Search Functions
def perform_arxiv_search(query):
"""Enhanced Arxiv search with summary"""
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = client.predict(
query, 20, "Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)[0]
summary = client.predict(
query,
"mistralai/Mixtral-8x7B-Instruct-v0.1",
True,
api_name="/ask_llm"
)
response = f"### Search Results for: {query}\n\n{summary}\n\n### References\n\n{refs}"
return response, refs
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True,
full_audio=False, voice="en-US-AriaNeural"):
"""Full Arxiv search with audio summaries"""
start = time.time()
response, refs = perform_arxiv_search(q)
st.markdown(response)
# Generate audio responses
if full_audio:
audio_file = asyncio.run(generate_audio(response, voice=voice))
if audio_file:
render_audio_result(audio_file, "Complete Response")
if vocal_summary:
summary_audio = asyncio.run(generate_audio(
f"Summary of results for query: {q}",
voice=voice
))
if summary_audio:
render_audio_result(summary_audio, "Summary")
elapsed = time.time() - start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
return response
def render_search_interface():
"""Main search interface with voice recognition and model selection"""
st.header("🔍 Voice Search & Research")
# Voice and model settings
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
selected_voice = st.selectbox(
"Select Voice",
ENGLISH_VOICES,
index=0,
help="Choose the voice for audio responses"
)
with col2:
run_option = st.selectbox(
"Model:",
["Arxiv", "GPT-4o", "Claude-3.5"],
key="run_option"
)
with col3:
autorun = st.checkbox("⚙ AutoRun", value=True, key="autorun")
# Voice component
voice_result = create_voice_component()
# Handle voice input with autorun
if voice_result and isinstance(voice_result, (str, dict)):
# Extract text and trigger info
if isinstance(voice_result, dict):
current_text = voice_result.get('text', '')
trigger = voice_result.get('trigger')
else:
current_text = voice_result
trigger = None
# Show text in edit box
edited_input = st.text_area(
"✏️ Edit Input:",
value=current_text,
height=100,
key="edited_input"
)
# Check if input has changed
input_changed = (edited_input != st.session_state.get('last_processed_text', ''))
# Process based on autorun and model selection
if autorun and input_changed and edited_input:
st.session_state.last_processed_text = edited_input
try:
with st.spinner("Processing..."):
if run_option == "Arxiv":
result = perform_ai_lookup(
edited_input,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=True,
voice=selected_voice
)
elif run_option == "GPT-4o":
result = process_with_gpt(edited_input)
# Generate audio for GPT response
audio_file = asyncio.run(generate_audio(result, voice=selected_voice))
if audio_file:
render_audio_result(audio_file, "GPT-4 Response")
elif run_option == "Claude-3.5":
result = process_with_claude(edited_input)
# Generate audio for Claude response
audio_file = asyncio.run(generate_audio(result, voice=selected_voice))
if audio_file:
render_audio_result(audio_file, "Claude Response")
# Save to history
st.session_state.transcript_history.append({
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'query': edited_input,
'response': result,
'model': run_option
})
except Exception as e:
st.error(f"Error processing request: {str(e)}")
# Manual run button
elif st.button("▶ Run"):
try:
with st.spinner("Processing..."):
if run_option == "Arxiv":
result = perform_ai_lookup(
edited_input,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=True,
voice=selected_voice
)
elif run_option == "GPT-4o":
result = process_with_gpt(edited_input)
audio_file = asyncio.run(generate_audio(result, voice=selected_voice))
if audio_file:
render_audio_result(audio_file, "GPT-4 Response")
elif run_option == "Claude-3.5":
result = process_with_claude(edited_input)
audio_file = asyncio.run(generate_audio(result, voice=selected_voice))
if audio_file:
render_audio_result(audio_file, "Claude Response")
# Save to history
st.session_state.transcript_history.append({
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'query': edited_input,
'response': result,
'model': run_option
})
except Exception as e:
st.error(f"Error processing request: {str(e)}")
def main():
st.title("🔬 ARIA Research Assistant")
# Initialize settings
with st.sidebar:
st.title("⚙️ Settings")
# Audio Settings
st.subheader("Audio Settings")
st.session_state.autoplay_audio = st.checkbox(
"Autoplay Audio",
value=True,
help="Automatically play audio when generated"
)
rate = st.slider("Speech Rate", -50, 50, 0, 5)
pitch = st.slider("Pitch", -50, 50, 0, 5)
# Advanced Settings
st.subheader("Advanced")
save_history = st.checkbox(
"Save History",
value=True,
help="Save transcripts and responses"
)
cleanup_old = st.checkbox(
"Auto Cleanup",
value=False,
help="Remove old files automatically"
)
# Main content tabs
tabs = st.tabs(["🎤 Voice Search", "📚 History", "🎵 Media", "⚙️ Advanced"])
with tabs[0]:
render_search_interface()
with tabs[1]:
st.header("Search History")
if st.session_state.transcript_history:
for entry in reversed(st.session_state.transcript_history):
with st.expander(
f"🔍 {entry['timestamp']} - {entry['query'][:50]}...",
expanded=False
):
st.markdown(f"**Model:** {entry['model']}")
st.markdown(entry['response'])
with tabs[2]:
st.header("Media Files")
media_tabs = st.tabs(["🎵 Audio", "🎥 Video", "📷 Images"])
with media_tabs[0]:
audio_files = glob.glob("*.mp3")
if audio_files:
for audio_file in sorted(audio_files, key=os.path.getmtime, reverse=True):
st.markdown(get_audio_autoplay_html(audio_file), unsafe_allow_html=True)
else:
st.write("No audio files found")
with media_tabs[1]:
video_files = glob.glob("*.mp4")
if video_files:
cols = st.columns(2)
for idx, video_file in enumerate(video_files):
with cols[idx % 2]:
st.video(video_file)
else:
st.write("No video files found")
with media_tabs[2]:
image_files = glob.glob("*.png") + glob.glob("*.jpg")
if image_files:
cols = st.columns(3)
for idx, image_file in enumerate(image_files):
with cols[idx % 3]:
st.image(Image.open(image_file), use_column_width=True)
else:
st.write("No images found")
with tabs[3]:
st.header("Advanced Settings")
col1, col2 = st.columns(2)
with col1:
st.subheader("Model Settings")
st.selectbox(
"Default Model",
["Arxiv", "GPT-4o", "Claude-3.5"],
key="default_model"
)
st.number_input(
"Max Response Length",
min_value=100,
max_value=2000,
value=1000,
key="max_tokens"
)
with col2:
st.subheader("Voice Settings")
st.slider(
"Pause Detection (ms)",
min_value=500,
max_value=3000,
value=1500,
step=100,
key="pause_threshold"
)
st.checkbox(
"High Quality Voice",
value=True,
key="high_quality_audio"
)
# Cleanup utility
def cleanup_old_files(days=7):
"""Remove files older than specified days"""
current_time = time.time()
for pattern in ["*.md", "*.mp3"]:
for f in glob.glob(pattern):
creation_time = os.path.getctime(f)
if (current_time - creation_time) // (24 * 3600) >= days:
try:
os.remove(f)
except:
pass
if __name__ == "__main__":
if st.session_state.get('cleanup_enabled', False):
cleanup_old_files()
main()
|