File size: 21,209 Bytes
9abe9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts

# 1. Core Configuration & Setup
st.set_page_config(
    page_title="🚲BikeAI🏆 Research Assistant Pro",
    page_icon="🚲🏆",
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a bug': 'https://huggingface.co/spaces/awacke1',
        'About': "Research Assistant Pro with Voice Search"
    }
)
load_dotenv()

# 2. API Setup & Clients
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', ''))
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', st.secrets.get('ANTHROPIC_API_KEY', ''))
hf_key = os.getenv('HF_KEY', st.secrets.get('HF_KEY', ''))

openai_client = OpenAI(api_key=openai_api_key)
claude_client = anthropic.Anthropic(api_key=anthropic_key)

# 3. Session State Management
if 'transcript_history' not in st.session_state:
    st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
    st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
    st.session_state['openai_model'] = "gpt-4-vision-preview"
if 'messages' not in st.session_state:
    st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
    st.session_state['last_voice_input'] = ""
if 'editing_file' not in st.session_state:
    st.session_state['editing_file'] = None
if 'current_audio' not in st.session_state:
    st.session_state['current_audio'] = None
if 'autoplay_audio' not in st.session_state:
    st.session_state['autoplay_audio'] = True
if 'should_rerun' not in st.session_state:
    st.session_state['should_rerun'] = False
if 'old_val' not in st.session_state:
    st.session_state['old_val'] = None

# 4. Style Definitions
st.markdown("""
<style>
    .main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
    .stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
    .stButton>button {
        margin-right: 0.5rem;
        background-color: #4CAF50;
        color: white;
        padding: 0.5rem 1rem;
        border-radius: 5px;
        border: none;
        transition: background-color 0.3s;
    }
    .stButton>button:hover {
        background-color: #45a049;
    }
    .audio-player {
        margin: 1rem 0;
        padding: 1rem;
        border-radius: 10px;
        background: white;
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
    }
    .file-manager {
        padding: 1rem;
        background: white;
        border-radius: 10px;
        margin: 1rem 0;
    }
</style>
""", unsafe_allow_html=True)

FILE_EMOJIS = {
    "md": "📝",
    "mp3": "🎵",
    "mp4": "🎥",
    "png": "🖼️",
    "jpg": "📸"
}

# 5. Voice Recognition Component
def create_voice_component():
    """Create auto-starting voice recognition component"""
    return components.html(
        """
        <div style="padding: 20px; border-radius: 10px; background: #f0f2f6;">
            <div id="status">Initializing voice recognition...</div>
            <div id="output" style="margin-top: 10px; padding: 10px; min-height: 100px; 
                                  background: white; border-radius: 5px; white-space: pre-wrap;"></div>
            <script>
                if ('webkitSpeechRecognition' in window) {
                    const recognition = new webkitSpeechRecognition();
                    recognition.continuous = true;
                    recognition.interimResults = true;
                    
                    const status = document.getElementById('status');
                    const output = document.getElementById('output');
                    let fullTranscript = '';
                    
                    // Auto-start on load
                    window.addEventListener('load', () => {
                        setTimeout(() => {
                            try {
                                recognition.start();
                                status.textContent = 'Listening...';
                            } catch (e) {
                                console.error('Start error:', e);
                                status.textContent = 'Error starting recognition';
                            }
                        }, 1000);
                    });
                    
                    recognition.onresult = (event) => {
                        let interimTranscript = '';
                        let finalTranscript = '';
                        
                        for (let i = event.resultIndex; i < event.results.length; i++) {
                            const transcript = event.results[i][0].transcript;
                            if (event.results[i].isFinal) {
                                finalTranscript += transcript + '\\n';
                            } else {
                                interimTranscript += transcript;
                            }
                        }
                        
                        if (finalTranscript) {
                            fullTranscript += finalTranscript;
                            window.parent.postMessage({
                                type: 'streamlit:setComponentValue',
                                value: fullTranscript,
                                dataType: 'json',
                            }, '*');
                        }
                        
                        output.textContent = fullTranscript + (interimTranscript ? '... ' + interimTranscript : '');
                        output.scrollTop = output.scrollHeight;
                    };
                    
                    recognition.onend = () => {
                        try {
                            recognition.start();
                            status.textContent = 'Listening...';
                        } catch (e) {
                            console.error('Restart error:', e);
                            status.textContent = 'Recognition stopped. Refresh to restart.';
                        }
                    };
                    
                    recognition.onerror = (event) => {
                        console.error('Recognition error:', event.error);
                        status.textContent = 'Error: ' + event.error;
                    };
                } else {
                    document.getElementById('status').textContent = 'Speech recognition not supported in this browser';
                }
            </script>
        </div>
        """,
        height=200
    )

# 6. Audio Processing Functions
def get_autoplay_audio_html(audio_path, width="100%"):
    """Create HTML for autoplaying audio with controls"""
    try:
        with open(audio_path, "rb") as audio_file:
            audio_bytes = audio_file.read()
            audio_b64 = base64.b64encode(audio_bytes).decode()
            return f'''
                <audio controls autoplay style="width: {width};">
                    <source src="data:audio/mpeg;base64,{audio_b64}" type="audio/mpeg">
                    Your browser does not support the audio element.
                </audio>
                <div style="margin-top: 5px;">
                    <a href="data:audio/mpeg;base64,{audio_b64}" 
                       download="{os.path.basename(audio_path)}"
                       style="text-decoration: none;">
                       ⬇️ Download Audio
                    </a>
                </div>
            '''
    except Exception as e:
        return f"Error loading audio: {str(e)}"

def clean_for_speech(text: str) -> str:
    """Clean text for speech synthesis"""
    text = text.replace("\n", " ")
    text = text.replace("</s>", " ")
    text = text.replace("#", "")
    text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text

async def generate_audio(text, voice="en-US-AriaNeural", rate="+0%", pitch="+0Hz"):
    """Generate audio using Edge TTS"""
    text = clean_for_speech(text)
    if not text.strip():
        return None
    
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    output_file = f"response_{timestamp}.mp3"
    
    communicate = edge_tts.Communicate(text, voice, rate=rate, pitch=pitch)
    await communicate.save(output_file)
    
    return output_file

def render_audio_result(audio_file, title="Generated Audio"):
    """Render audio result with autoplay in Streamlit"""
    if audio_file and os.path.exists(audio_file):
        st.markdown(f"### {title}")
        st.markdown(get_autoplay_audio_html(audio_file), unsafe_allow_html=True)

# 7. File Operations
def generate_filename(text, response="", file_type="md"):
    """Generate intelligent filename"""
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    safe_text = re.sub(r'[^\w\s-]', '', text[:50])
    return f"{timestamp}_{safe_text}.{file_type}"

def create_file(text, response, file_type="md"):
    """Create file with content"""
    filename = generate_filename(text, response, file_type)
    with open(filename, 'w', encoding='utf-8') as f:
        f.write(f"{text}\n\n{response}")
    return filename

def get_download_link(file_path):
    """Generate download link for file"""
    with open(file_path, "rb") as file:
        contents = file.read()
    b64 = base64.b64encode(contents).decode()
    file_name = os.path.basename(file_path)
    return f'<a href="data:file/txt;base64,{b64}" download="{file_name}">⬇️ Download {file_name}</a>'

# 8. Search and Process Functions
def perform_arxiv_search(query, response_type="summary"):
    """Enhanced Arxiv search with voice response"""
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    
    # Get search results and AI interpretation
    refs = client.predict(
        query, 20, "Semantic Search", 
        "mistralai/Mixtral-8x7B-Instruct-v0.1",
        api_name="/update_with_rag_md"
    )[0]
    
    summary = client.predict(
        query,
        "mistralai/Mixtral-8x7B-Instruct-v0.1",
        True,
        api_name="/ask_llm"
    )
    
    # Format response
    response = f"### 🔎 Search Results for: {query}\n\n{summary}\n\n### 📚 References\n\n{refs}"
    
    return response, refs

async def process_voice_search(query):
    """Process voice search with automatic audio"""
    response, refs = perform_arxiv_search(query)
    
    # Generate audio from response
    audio_file = await generate_audio(response)
    
    # Update state
    st.session_state.current_audio = audio_file
    
    return response, audio_file

def process_with_gpt(text):
    """Process text with GPT-4"""
    if not text:
        return
        
    st.session_state.messages.append({"role": "user", "content": text})
    
    with st.chat_message("user"):
        st.markdown(text)
        
    with st.chat_message("assistant"):
        response = openai_client.chat.completions.create(
            model=st.session_state.openai_model,
            messages=st.session_state.messages,
            stream=False
        )
        
        answer = response.choices[0].message.content
        st.write(f"GPT-4: {answer}")
        
        # Generate audio response
        audio_file = asyncio.run(generate_audio(answer))
        if audio_file:
            render_audio_result(audio_file, "GPT-4 Response")
            
        # Save response
        create_file(text, answer, "md")
        st.session_state.messages.append({"role": "assistant", "content": answer})
        
    return answer

def process_with_claude(text):
    """Process text with Claude"""
    if not text:
        return
        
    with st.chat_message("user"):
        st.markdown(text)
        
    with st.chat_message("assistant"):
        response = claude_client.messages.create(
            model="claude-3-sonnet-20240229",
            max_tokens=1000,
            messages=[{"role": "user", "content": text}]
        )
        
        answer = response.content[0].text
        st.write(f"Claude-3: {answer}")
        
        # Generate audio response
        audio_file = asyncio.run(generate_audio(answer))
        if audio_file:
            render_audio_result(audio_file, "Claude Response")
            
        # Save response
        create_file(text, answer, "md")
        st.session_state.chat_history.append({"user": text, "claude": answer})
        
    return answer

# 9. UI Components
def render_search_interface():
    """Render main search interface"""
    st.header("🔍 Voice Search")
    
    # Voice component with autorun
    voice_component = create_voice_component()
    
    if voice_component:
        voice_text = voice_component
        if voice_text and voice_text != st.session_state.get('last_voice_text', ''):
            st.session_state.last_voice_text = voice_text
            
            # Process with selected model
            if st.session_state.autoplay_audio:
                response, audio_file = asyncio.run(process_voice_search(voice_text.strip()))
                if response:
                    st.markdown(response)
                    if audio_file:
                        render_audio_result(audio_file, "Search Results")

    # Manual search option
    with st.expander("📝 Manual Search", expanded=False):
        col1, col2 = st.columns([3, 1])
        with col1:
            query = st.text_input("Enter search query:")
        with col2:
            if st.button("🔍 Search"):
                response, audio_file = asyncio.run(process_voice_search(query))
                if response:
                    st.markdown(response)
                    if audio_file:
                        render_audio_result(audio_file)

def display_file_manager():
    """Display file manager with media preview"""
    st.sidebar.title("📁 File Manager")
    
    files = {
        'Documents': glob.glob("*.md"),
        'Audio': glob.glob("*.mp3"),
        'Video': glob.glob("*.mp4"),
        'Images': glob.glob("*.png") + glob.glob("*.jpg")
    }
    
    # Top actions
    col1, col2 = st.sidebar.columns(2)
    with col1:
        if st.button("🗑 Delete All"):
            for category in files.values():
                for file in category:
                    os.remove(file)
            st.rerun()
    
    with col2:
        if st.button("⬇️ Download All"):
            zip_name = f"archive_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
            with zipfile.ZipFile(zip_name, 'w') as zipf:
                for category in files.values():
                    for file in category:
                        zipf.write(file)
            st.sidebar.markdown(get_download_link(zip_name), unsafe_allow_html=True)
    
    # Display files by category
    for category, category_files in files.items():
        if category_files:
            with st.sidebar.expander(f"{FILE_EMOJIS.get(category.lower(), '📄')} {category} ({len(category_files)})", expanded=True):
                for file in sorted(category_files, key=os.path.getmtime, reverse=True):
                    col1, col2, col3 = st.columns([3, 1, 1])
                    with col1:
                        st.markdown(f"**{os.path.basename(file)}**")
                    with col2:
                        st.markdown(get_download_link(file), unsafe_allow_html=True)
                    with col3:
                        if st.button("🗑", key=f"del_{file}"):
                            os.remove(file)
                            st.rerun()

def display_media_gallery():
    """Display media files in gallery format"""
    media_tabs = st.tabs(["🎵 Audio", "🎥 Video", "📷 Images"])
    
    with media_tabs[0]:
        audio_files = glob.glob("*.mp3")
        if audio_files:
            for audio_file in audio_files:
                st.markdown(get_autoplay_audio_html(audio_file), unsafe_allow_html=True)
        else:
            st.write("No audio files found")
            
    with media_tabs[1]:
        video_files = glob.glob("*.mp4")
        if video_files:
            cols = st.columns(2)
            for idx, video_file in enumerate(video_files):
                with cols[idx % 2]:
                    st.video(video_file)
        else:
            st.write("No video files found")
            
    with media_tabs[2]:
        image_files = glob.glob("*.png") + glob.glob("*.jpg")
        if image_files:
            cols = st.columns(3)
            for idx, image_file in enumerate(image_files):
                with cols[idx % 3]:
                    st.image(Image.open(image_file), use_column_width=True)
                    if st.button(f"Analyze {os.path.basename(image_file)}", key=f"analyze_{image_file}"):
                        with st.spinner("Analyzing image..."):
                            analysis = process_with_gpt(f"Analyze this image: {image_file}")
                            st.markdown(analysis)
        else:
            st.write("No images found")

def display_search_history():
    """Display search history with audio playback"""
    st.header("Search History")
    
    history_tabs = st.tabs(["🔍 Voice Searches", "💬 Chat History"])
    
    with history_tabs[0]:
        for entry in reversed(st.session_state.transcript_history):
            with st.expander(f"🔍 {entry['timestamp']} - {entry['query'][:50]}...", expanded=False):
                st.markdown(entry['response'])
                if entry.get('audio'):
                    render_audio_result(entry['audio'], "Recorded Response")
    
    with history_tabs[1]:
        chat_tabs = st.tabs(["Claude History", "GPT-4 History"])
        with chat_tabs[0]:
            for chat in st.session_state.chat_history:
                st.markdown(f"**You:** {chat['user']}")
                st.markdown(f"**Claude:** {chat['claude']}")
                st.markdown("---")
        with chat_tabs[1]:
            for msg in st.session_state.messages:
                with st.chat_message(msg["role"]):
                    st.markdown(msg["content"])

# Main Application
def main():
    st.title("🔬 Research Assistant Pro")
    
    # Initialize autorun setting
    if 'autorun' not in st.session_state:
        st.session_state.autorun = True
    
    # Settings sidebar
    with st.sidebar:
        st.title("⚙️ Settings")
        st.session_state.autorun = st.checkbox("Enable Autorun", value=True)
        
        st.subheader("Voice Settings")
        voice_options = [
            "en-US-AriaNeural",
            "en-US-GuyNeural",
            "en-GB-SoniaNeural",
            "en-AU-NatashaNeural"
        ]
        selected_voice = st.selectbox("Select Voice", voice_options)
        
        st.subheader("Audio Settings")
        rate = st.slider("Speech Rate", -50, 50, 0, 5)
        pitch = st.slider("Pitch", -50, 50, 0, 5)
        
        st.session_state.autoplay_audio = st.checkbox(
            "Autoplay Audio",
            value=True,
            help="Automatically play audio when generated"
        )
    
    # Main content tabs
    tabs = st.tabs(["🎤 Voice Search", "📚 History", "🎵 Media", "⚙️ Advanced"])
    
    with tabs[0]:
        render_search_interface()
        
    with tabs[1]:
        display_search_history()
        
    with tabs[2]:
        display_media_gallery()
        
    with tabs[3]:
        st.header("Advanced Settings")
        
        col1, col2 = st.columns(2)
        with col1:
            st.subheader("Model Settings")
            st.selectbox(
                "Default Search Model",
                ["Claude-3", "GPT-4", "Mixtral-8x7B"],
                key="default_model"
            )
            st.number_input(
                "Max Results",
                min_value=5,
                max_value=50,
                value=20,
                key="max_results"
            )
            
        with col2:
            st.subheader("Audio Settings")
            st.slider(
                "Max Audio Duration (seconds)",
                min_value=30,
                max_value=300,
                value=120,
                step=30,
                key="max_audio_duration"
            )
            st.checkbox(
                "High Quality Audio",
                value=True,
                key="high_quality_audio"
            )
    
    # File manager sidebar
    display_file_manager()
    
    # Handle rerun if needed
    if st.session_state.get('should_rerun', False):
        st.session_state.should_rerun = False
        st.rerun()

if __name__ == "__main__":
    main()