Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 27,380 Bytes
9abe9e2 ffd10f7 9abe9e2 ffd10f7 9abe9e2 ffd10f7 9abe9e2 ffd10f7 9abe9e2 ffd10f7 9abe9e2 ffd10f7 9abe9e2 ffd10f7 9abe9e2 ffd10f7 9abe9e2 ffd10f7 9abe9e2 9e4930b 9abe9e2 9e4930b 9abe9e2 9e4930b 9abe9e2 9e4930b 9abe9e2 9e4930b 9abe9e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
# 1. Core Configuration & Setup
st.set_page_config(
page_title="๐ฒBikeAI๐ Research Assistant Pro",
page_icon="๐ฒ๐",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "Research Assistant Pro with Voice Search"
}
)
load_dotenv()
# 2. API Setup & Clients
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', ''))
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', st.secrets.get('ANTHROPIC_API_KEY', ''))
hf_key = os.getenv('HF_KEY', st.secrets.get('HF_KEY', ''))
openai_client = OpenAI(api_key=openai_api_key)
claude_client = anthropic.Anthropic(api_key=anthropic_key)
# 3. Session State Management
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
st.session_state['openai_model'] = "gpt-4-vision-preview"
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'editing_file' not in st.session_state:
st.session_state['editing_file'] = None
if 'current_audio' not in st.session_state:
st.session_state['current_audio'] = None
if 'autoplay_audio' not in st.session_state:
st.session_state['autoplay_audio'] = True
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'old_val' not in st.session_state:
st.session_state['old_val'] = None
# 4. Style Definitions
st.markdown("""
<style>
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
.stButton>button {
margin-right: 0.5rem;
background-color: #4CAF50;
color: white;
padding: 0.5rem 1rem;
border-radius: 5px;
border: none;
transition: background-color 0.3s;
}
.stButton>button:hover {
background-color: #45a049;
}
.audio-player {
margin: 1rem 0;
padding: 1rem;
border-radius: 10px;
background: white;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.file-manager {
padding: 1rem;
background: white;
border-radius: 10px;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
FILE_EMOJIS = {
"md": "๐",
"mp3": "๐ต",
"mp4": "๐ฅ",
"png": "๐ผ๏ธ",
"jpg": "๐ธ"
}
# 5. Voice Recognition Component
def create_voice_component():
"""Create auto-searching voice recognition component"""
return components.html(
"""
<div style="padding: 20px; border-radius: 10px; background: #f0f2f6;">
<div id="status" style="margin-bottom: 10px; color: #666;">Starting voice recognition...</div>
<div id="interim" style="color: #666; min-height: 24px;"></div>
<div id="output" style="margin-top: 10px; padding: 10px; min-height: 100px;
background: white; border-radius: 5px; white-space: pre-wrap;"></div>
<script>
if ('webkitSpeechRecognition' in window) {
const recognition = new webkitSpeechRecognition();
recognition.continuous = true;
recognition.interimResults = true;
const status = document.getElementById('status');
const interim = document.getElementById('interim');
const output = document.getElementById('output');
let fullTranscript = '';
let lastPauseTime = Date.now();
let pauseThreshold = 1500; // Time in ms to wait before triggering search
// Auto-start on load
window.addEventListener('load', () => {
setTimeout(() => {
try {
recognition.start();
status.textContent = 'Listening...';
} catch (e) {
console.error('Start error:', e);
status.textContent = 'Error starting recognition';
}
}, 1000);
});
recognition.onresult = (event) => {
let interimTranscript = '';
let finalTranscript = '';
for (let i = event.resultIndex; i < event.results.length; i++) {
const transcript = event.results[i][0].transcript;
if (event.results[i].isFinal) {
finalTranscript += transcript + ' ';
lastPauseTime = Date.now();
} else {
interimTranscript += transcript;
}
}
if (finalTranscript) {
fullTranscript += finalTranscript;
interim.textContent = '';
output.textContent = fullTranscript;
// Send to Streamlit for processing
window.parent.postMessage({
type: 'streamlit:setComponentValue',
value: fullTranscript,
dataType: 'json',
}, '*');
} else if (interimTranscript) {
interim.textContent = '... ' + interimTranscript;
}
output.scrollTop = output.scrollHeight;
};
// Check for pauses and trigger search
setInterval(() => {
if (fullTranscript && Date.now() - lastPauseTime > pauseThreshold) {
if (output.dataset.lastProcessed !== fullTranscript) {
output.dataset.lastProcessed = fullTranscript;
window.parent.postMessage({
type: 'streamlit:setComponentValue',
value: {
text: fullTranscript,
trigger: 'pause'
},
dataType: 'json',
}, '*');
}
}
}, 500);
recognition.onend = () => {
try {
recognition.start();
status.textContent = 'Listening...';
} catch (e) {
console.error('Restart error:', e);
status.textContent = 'Recognition stopped. Refresh to restart.';
}
};
recognition.onerror = (event) => {
console.error('Recognition error:', event.error);
status.textContent = 'Error: ' + event.error;
};
} else {
document.getElementById('status').textContent = 'Speech recognition not supported in this browser';
}
</script>
</div>
""",
height=200
)
# Available English voices
ENGLISH_VOICES = [
"en-US-AriaNeural", # Female, conversational
"en-US-JennyNeural", # Female, customer service
"en-US-GuyNeural", # Male, newscast
"en-US-RogerNeural", # Male, calm
"en-GB-SoniaNeural", # British female
"en-GB-RyanNeural", # British male
"en-AU-NatashaNeural", # Australian female
"en-AU-WilliamNeural", # Australian male
"en-CA-ClaraNeural", # Canadian female
"en-CA-LiamNeural", # Canadian male
"en-IE-EmilyNeural", # Irish female
"en-IE-ConnorNeural", # Irish male
"en-IN-NeerjaNeural", # Indian female
"en-IN-PrabhatNeural", # Indian male
]
def render_search_interface():
"""Render main search interface with auto-search voice component"""
st.header("๐ Voice Search")
# Voice settings
col1, col2 = st.columns([2, 1])
with col1:
selected_voice = st.selectbox(
"Select Voice",
ENGLISH_VOICES,
index=0,
help="Choose the voice for audio responses"
)
with col2:
auto_search = st.checkbox("Auto-Search on Pause", value=True)
# Voice component
voice_result = create_voice_component()
# Handle voice input
if voice_result and isinstance(voice_result, (str, dict)):
# Extract text and trigger info
if isinstance(voice_result, dict):
current_text = voice_result.get('text', '')
trigger = voice_result.get('trigger')
else:
current_text = voice_result
trigger = None
# Process on pause trigger if enabled
if auto_search and trigger == 'pause' and current_text:
if current_text != st.session_state.get('last_processed_text', ''):
st.session_state.last_processed_text = current_text
# Show the detected text
st.info(f"๐ค Detected: {current_text}")
# Perform search
try:
with st.spinner("Searching and generating audio response..."):
response, audio_file = asyncio.run(
process_voice_search(
current_text,
voice=selected_voice
)
)
if response:
st.markdown(response)
if audio_file:
render_audio_result(audio_file, "Search Results")
# Save to history
st.session_state.transcript_history.append({
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'query': current_text,
'response': response,
'audio': audio_file
})
except Exception as e:
st.error(f"Error processing search: {str(e)}")
# Manual search option
with st.expander("๐ Manual Search", expanded=False):
query = st.text_input("Search Query:", value=st.session_state.get('last_processed_text', ''))
if st.button("๐ Search"):
try:
with st.spinner("Searching and generating audio..."):
response, audio_file = asyncio.run(
process_voice_search(
query,
voice=selected_voice
)
)
if response:
st.markdown(response)
if audio_file:
render_audio_result(audio_file)
except Exception as e:
st.error(f"Error processing search: {str(e)}")
# 6. Audio Processing Functions
def get_autoplay_audio_html(audio_path, width="100%"):
"""Create HTML for autoplaying audio with controls"""
try:
with open(audio_path, "rb") as audio_file:
audio_bytes = audio_file.read()
audio_b64 = base64.b64encode(audio_bytes).decode()
return f'''
<audio controls autoplay style="width: {width};">
<source src="data:audio/mpeg;base64,{audio_b64}" type="audio/mpeg">
Your browser does not support the audio element.
</audio>
<div style="margin-top: 5px;">
<a href="data:audio/mpeg;base64,{audio_b64}"
download="{os.path.basename(audio_path)}"
style="text-decoration: none;">
โฌ๏ธ Download Audio
</a>
</div>
'''
except Exception as e:
return f"Error loading audio: {str(e)}"
def clean_for_speech(text: str) -> str:
"""Clean text for speech synthesis"""
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
async def generate_audio(text, voice="en-US-AriaNeural", rate="+0%", pitch="+0Hz"):
"""Generate audio using Edge TTS"""
text = clean_for_speech(text)
if not text.strip():
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = f"response_{timestamp}.mp3"
communicate = edge_tts.Communicate(text, voice, rate=rate, pitch=pitch)
await communicate.save(output_file)
return output_file
def render_audio_result(audio_file, title="Generated Audio"):
"""Render audio result with autoplay in Streamlit"""
if audio_file and os.path.exists(audio_file):
st.markdown(f"### {title}")
st.markdown(get_autoplay_audio_html(audio_file), unsafe_allow_html=True)
# 7. File Operations
def generate_filename(text, response="", file_type="md"):
"""Generate intelligent filename"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_text = re.sub(r'[^\w\s-]', '', text[:50])
return f"{timestamp}_{safe_text}.{file_type}"
def create_file(text, response, file_type="md"):
"""Create file with content"""
filename = generate_filename(text, response, file_type)
with open(filename, 'w', encoding='utf-8') as f:
f.write(f"{text}\n\n{response}")
return filename
def get_download_link(file_path):
"""Generate download link for file"""
with open(file_path, "rb") as file:
contents = file.read()
b64 = base64.b64encode(contents).decode()
file_name = os.path.basename(file_path)
return f'<a href="data:file/txt;base64,{b64}" download="{file_name}">โฌ๏ธ Download {file_name}</a>'
# 8. Search and Process Functions
def perform_arxiv_search(query, response_type="summary"):
"""Enhanced Arxiv search with voice response"""
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
# Get search results and AI interpretation
refs = client.predict(
query, 20, "Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)[0]
summary = client.predict(
query,
"mistralai/Mixtral-8x7B-Instruct-v0.1",
True,
api_name="/ask_llm"
)
# Format response
response = f"### ๐ Search Results for: {query}\n\n{summary}\n\n### ๐ References\n\n{refs}"
return response, refs
async def process_voice_search(query):
"""Process voice search with automatic audio"""
response, refs = perform_arxiv_search(query)
# Generate audio from response
audio_file = await generate_audio(response)
# Update state
st.session_state.current_audio = audio_file
return response, audio_file
def process_with_gpt(text):
"""Process text with GPT-4"""
if not text:
return
st.session_state.messages.append({"role": "user", "content": text})
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
response = openai_client.chat.completions.create(
model=st.session_state.openai_model,
messages=st.session_state.messages,
stream=False
)
answer = response.choices[0].message.content
st.write(f"GPT-4: {answer}")
# Generate audio response
audio_file = asyncio.run(generate_audio(answer))
if audio_file:
render_audio_result(audio_file, "GPT-4 Response")
# Save response
create_file(text, answer, "md")
st.session_state.messages.append({"role": "assistant", "content": answer})
return answer
def process_with_claude(text):
"""Process text with Claude"""
if not text:
return
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
response = claude_client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role": "user", "content": text}]
)
answer = response.content[0].text
st.write(f"Claude-3: {answer}")
# Generate audio response
audio_file = asyncio.run(generate_audio(answer))
if audio_file:
render_audio_result(audio_file, "Claude Response")
# Save response
create_file(text, answer, "md")
st.session_state.chat_history.append({"user": text, "claude": answer})
return answer
# 9. UI Components
def render_search_interface():
"""Render main search interface with voice component"""
st.header("๐ Voice Search")
# Voice component with autorun
voice_text = create_voice_component()
# Handle voice input
if voice_text and isinstance(voice_text, (str, dict)):
# Convert dict to string if necessary
current_text = voice_text if isinstance(voice_text, str) else voice_text.get('value', '')
# Compare with last processed text
if current_text and current_text != st.session_state.get('last_voice_text', ''):
st.session_state.last_voice_text = current_text
# Clean the text
cleaned_text = current_text.replace('\n', ' ').strip()
# Process with selected model
if st.session_state.autoplay_audio and cleaned_text:
try:
response, audio_file = asyncio.run(process_voice_search(cleaned_text))
if response:
st.markdown(response)
if audio_file:
render_audio_result(audio_file, "Search Results")
except Exception as e:
st.error(f"Error processing voice search: {str(e)}")
# Manual search option
with st.expander("๐ Manual Search", expanded=False):
col1, col2 = st.columns([3, 1])
with col1:
query = st.text_input("Enter search query:")
with col2:
if st.button("๐ Search"):
try:
response, audio_file = asyncio.run(process_voice_search(query))
if response:
st.markdown(response)
if audio_file:
render_audio_result(audio_file)
except Exception as e:
st.error(f"Error processing search: {str(e)}")
def display_file_manager():
"""Display file manager with media preview"""
st.sidebar.title("๐ File Manager")
files = {
'Documents': glob.glob("*.md"),
'Audio': glob.glob("*.mp3"),
'Video': glob.glob("*.mp4"),
'Images': glob.glob("*.png") + glob.glob("*.jpg")
}
# Top actions
col1, col2 = st.sidebar.columns(2)
with col1:
if st.button("๐ Delete All"):
for category in files.values():
for file in category:
os.remove(file)
st.rerun()
with col2:
if st.button("โฌ๏ธ Download All"):
zip_name = f"archive_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for category in files.values():
for file in category:
zipf.write(file)
st.sidebar.markdown(get_download_link(zip_name), unsafe_allow_html=True)
# Display files by category
for category, category_files in files.items():
if category_files:
with st.sidebar.expander(f"{FILE_EMOJIS.get(category.lower(), '๐')} {category} ({len(category_files)})", expanded=True):
for file in sorted(category_files, key=os.path.getmtime, reverse=True):
col1, col2, col3 = st.columns([3, 1, 1])
with col1:
st.markdown(f"**{os.path.basename(file)}**")
with col2:
st.markdown(get_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("๐", key=f"del_{file}"):
os.remove(file)
st.rerun()
def display_media_gallery():
"""Display media files in gallery format"""
media_tabs = st.tabs(["๐ต Audio", "๐ฅ Video", "๐ท Images"])
with media_tabs[0]:
audio_files = glob.glob("*.mp3")
if audio_files:
for audio_file in audio_files:
st.markdown(get_autoplay_audio_html(audio_file), unsafe_allow_html=True)
else:
st.write("No audio files found")
with media_tabs[1]:
video_files = glob.glob("*.mp4")
if video_files:
cols = st.columns(2)
for idx, video_file in enumerate(video_files):
with cols[idx % 2]:
st.video(video_file)
else:
st.write("No video files found")
with media_tabs[2]:
image_files = glob.glob("*.png") + glob.glob("*.jpg")
if image_files:
cols = st.columns(3)
for idx, image_file in enumerate(image_files):
with cols[idx % 3]:
st.image(Image.open(image_file), use_column_width=True)
if st.button(f"Analyze {os.path.basename(image_file)}", key=f"analyze_{image_file}"):
with st.spinner("Analyzing image..."):
analysis = process_with_gpt(f"Analyze this image: {image_file}")
st.markdown(analysis)
else:
st.write("No images found")
def display_search_history():
"""Display search history with audio playback"""
st.header("Search History")
history_tabs = st.tabs(["๐ Voice Searches", "๐ฌ Chat History"])
with history_tabs[0]:
for entry in reversed(st.session_state.transcript_history):
with st.expander(f"๐ {entry['timestamp']} - {entry['query'][:50]}...", expanded=False):
st.markdown(entry['response'])
if entry.get('audio'):
render_audio_result(entry['audio'], "Recorded Response")
with history_tabs[1]:
chat_tabs = st.tabs(["Claude History", "GPT-4 History"])
with chat_tabs[0]:
for chat in st.session_state.chat_history:
st.markdown(f"**You:** {chat['user']}")
st.markdown(f"**Claude:** {chat['claude']}")
st.markdown("---")
with chat_tabs[1]:
for msg in st.session_state.messages:
with st.chat_message(msg["role"]):
st.markdown(msg["content"])
# Main Application
def main():
st.title("๐ฌ Research Assistant Pro")
# Initialize autorun setting
if 'autorun' not in st.session_state:
st.session_state.autorun = True
# Settings sidebar
with st.sidebar:
st.title("โ๏ธ Settings")
st.session_state.autorun = st.checkbox("Enable Autorun", value=True)
st.subheader("Voice Settings")
voice_options = [
"en-US-AriaNeural",
"en-US-GuyNeural",
"en-GB-SoniaNeural",
"en-AU-NatashaNeural"
]
selected_voice = st.selectbox("Select Voice", voice_options)
st.subheader("Audio Settings")
rate = st.slider("Speech Rate", -50, 50, 0, 5)
pitch = st.slider("Pitch", -50, 50, 0, 5)
st.session_state.autoplay_audio = st.checkbox(
"Autoplay Audio",
value=True,
help="Automatically play audio when generated"
)
# Main content tabs
tabs = st.tabs(["๐ค Voice Search", "๐ History", "๐ต Media", "โ๏ธ Advanced"])
with tabs[0]:
render_search_interface()
with tabs[1]:
display_search_history()
with tabs[2]:
display_media_gallery()
with tabs[3]:
st.header("Advanced Settings")
col1, col2 = st.columns(2)
with col1:
st.subheader("Model Settings")
st.selectbox(
"Default Search Model",
["Claude-3", "GPT-4", "Mixtral-8x7B"],
key="default_model"
)
st.number_input(
"Max Results",
min_value=5,
max_value=50,
value=20,
key="max_results"
)
with col2:
st.subheader("Audio Settings")
st.slider(
"Max Audio Duration (seconds)",
min_value=30,
max_value=300,
value=120,
step=30,
key="max_audio_duration"
)
st.checkbox(
"High Quality Audio",
value=True,
key="high_quality_audio"
)
# File manager sidebar
display_file_manager()
# Handle rerun if needed
if st.session_state.get('should_rerun', False):
st.session_state.should_rerun = False
st.rerun()
if __name__ == "__main__":
main() |