File size: 41,993 Bytes
b33fc5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
import streamlit as st
import anthropic
import openai
import base64
import cv2
import glob
import json
import math
import os
import pytz
import random
import re
import requests
import time
import zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque, Counter
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
from streamlit_marquee import streamlit_marquee
from typing import Tuple, Optional
import pandas as pd

# Patch the asyncio event loop to allow nested use of asyncio.run()
import nest_asyncio
nest_asyncio.apply()

# ─────────────────────────────────────────────────────────
# 1. CORE CONFIGURATION & SETUP
# ─────────────────────────────────────────────────────────

st.set_page_config(
    page_title="🚲TalkingAIResearcherπŸ†",
    page_icon="πŸš²πŸ†",
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a bug': 'https://huggingface.co/spaces/awacke1',
        'About': "🚲TalkingAIResearcherπŸ†"
    }
)
load_dotenv()

# β–Ά Available English voices for Edge TTS
EDGE_TTS_VOICES = [
    "en-US-AriaNeural",
    "en-US-GuyNeural",
    "en-US-JennyNeural",
    "en-GB-SoniaNeural",
    "en-GB-RyanNeural",
    "en-AU-NatashaNeural",
    "en-AU-WilliamNeural",
    "en-CA-ClaraNeural",
    "en-CA-LiamNeural"
]

# β–Ά Initialize Session State
if 'marquee_settings' not in st.session_state:
    st.session_state['marquee_settings'] = {
        "background": "#1E1E1E",
        "color": "#FFFFFF",
        "font-size": "14px",
        "animationDuration": "20s",
        "width": "100%",
        "lineHeight": "35px"
    }
if 'tts_voice' not in st.session_state:
    st.session_state['tts_voice'] = EDGE_TTS_VOICES[0]
if 'audio_format' not in st.session_state:
    st.session_state['audio_format'] = 'mp3'
if 'transcript_history' not in st.session_state:
    st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
    st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
    st.session_state['openai_model'] = "gpt-4o-2024-05-13"
if 'messages' not in st.session_state:
    st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
    st.session_state['last_voice_input'] = ""
if 'editing_file' not in st.session_state:
    st.session_state['editing_file'] = None
if 'edit_new_name' not in st.session_state:
    st.session_state['edit_new_name'] = ""
if 'edit_new_content' not in st.session_state:
    st.session_state['edit_new_content'] = ""
if 'viewing_prefix' not in st.session_state:
    st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
    st.session_state['should_rerun'] = False
if 'old_val' not in st.session_state:
    st.session_state['old_val'] = None
if 'last_query' not in st.session_state:
    st.session_state['last_query'] = ""
if 'marquee_content' not in st.session_state:
    st.session_state['marquee_content'] = "πŸš€ Welcome to TalkingAIResearcher | πŸ€– Your Research Assistant"

# β–Ά Additional keys for performance, caching, etc.
if 'audio_cache' not in st.session_state:
    st.session_state['audio_cache'] = {}
if 'download_link_cache' not in st.session_state:
    st.session_state['download_link_cache'] = {}
if 'operation_timings' not in st.session_state:
    st.session_state['operation_timings'] = {}
if 'performance_metrics' not in st.session_state:
    st.session_state['performance_metrics'] = defaultdict(list)
if 'enable_audio' not in st.session_state:
    st.session_state['enable_audio'] = True  # Turn TTS on/off

# β–Ά API Keys
openai_api_key = os.getenv('OPENAI_API_KEY', "")
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
xai_key = os.getenv('xai', "")
if 'OPENAI_API_KEY' in st.secrets:
    openai_api_key = st.secrets['OPENAI_API_KEY']
if 'ANTHROPIC_API_KEY' in st.secrets:
    anthropic_key = st.secrets["ANTHROPIC_API_KEY"]

openai.api_key = openai_api_key
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
HF_KEY = os.getenv('HF_KEY')
API_URL = os.getenv('API_URL')

# β–Ά Helper constants
FILE_EMOJIS = {
    "md": "πŸ“",
    "mp3": "🎡",
    "wav": "πŸ”Š"
}

# ─────────────────────────────────────────────────────────
# 2. PERFORMANCE MONITORING & TIMING
# ─────────────────────────────────────────────────────────

class PerformanceTimer:
    def __init__(self, operation_name: str):
        self.operation_name = operation_name
        self.start_time = None
        
    def __enter__(self):
        self.start_time = time.time()
        return self
        
    def __exit__(self, exc_type, exc_val, exc_tb):
        if not exc_type:  # Only log if no exception occurred
            duration = time.time() - self.start_time
            st.session_state['operation_timings'][self.operation_name] = duration
            st.session_state['performance_metrics'][self.operation_name].append(duration)

def log_performance_metrics():
    st.sidebar.markdown("### ⏱️ Performance Metrics")
    metrics = st.session_state['operation_timings']
    if metrics:
        total_time = sum(metrics.values())
        st.sidebar.write(f"**Total Processing Time:** {total_time:.2f}s")
        for operation, duration in metrics.items():
            percentage = (duration / total_time) * 100
            st.sidebar.write(f"**{operation}:** {duration:.2f}s ({percentage:.1f}%)")
        history_data = []
        for op, times in st.session_state['performance_metrics'].items():
            if times:
                avg_time = sum(times) / len(times)
                history_data.append({"Operation": op, "Avg Time (s)": avg_time})
        if history_data:
            st.sidebar.markdown("### πŸ“Š Timing History (Avg)")
            chart_data = pd.DataFrame(history_data)
            st.sidebar.bar_chart(chart_data.set_index("Operation"))

# ─────────────────────────────────────────────────────────
# 3. HELPER FUNCTIONS (FILENAMES, LINKS, MARQUEE, ETC.)
# ─────────────────────────────────────────────────────────

def get_central_time():
    central = pytz.timezone('US/Central')
    return datetime.now(central)

def format_timestamp_prefix():
    ct = get_central_time()
    return ct.strftime("%Y%m%d_%H%M%S")

def initialize_marquee_settings():
    if 'marquee_settings' not in st.session_state:
        st.session_state['marquee_settings'] = {
            "background": "#1E1E1E",
            "color": "#FFFFFF",
            "font-size": "14px",
            "animationDuration": "20s",
            "width": "100%",
            "lineHeight": "35px"
        }

def get_marquee_settings():
    initialize_marquee_settings()
    return st.session_state['marquee_settings']

def update_marquee_settings_ui():
    st.sidebar.markdown("### 🎯 Marquee Settings")
    cols = st.sidebar.columns(2)
    with cols[0]:
        bg_color = st.color_picker("🎨 Background", 
                                  st.session_state['marquee_settings']["background"], 
                                  key="bg_color_picker")
        text_color = st.color_picker("✍️ Text", 
                                    st.session_state['marquee_settings']["color"], 
                                    key="text_color_picker")
    with cols[1]:
        font_size = st.slider("πŸ“ Size", 10, 24, 14, key="font_size_slider")
        duration = st.slider("⏱️ Speed (secs)", 1, 20, 20, key="duration_slider")

    st.session_state['marquee_settings'].update({
        "background": bg_color,
        "color": text_color,
        "font-size": f"{font_size}px",
        "animationDuration": f"{duration}s"
    })

def display_marquee(text, settings, key_suffix=""):
    truncated_text = text[:280] + "..." if len(text) > 280 else text
    streamlit_marquee(
        content=truncated_text,
        **settings,
        key=f"marquee_{key_suffix}"
    )
    st.write("")

def get_high_info_terms(text: str, top_n=10) -> list:
    stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with'])
    words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower())
    bi_grams = [' '.join(pair) for pair in zip(words, words[1:])]
    combined = words + bi_grams
    filtered = [term for term in combined if term not in stop_words and len(term.split()) <= 2]
    counter = Counter(filtered)
    return [term for term, freq in counter.most_common(top_n)]

def clean_text_for_filename(text: str) -> str:
    text = text.lower()
    text = re.sub(r'[^\w\s-]', '', text)
    words = text.split()
    stop_short = set(['the', 'and', 'for', 'with', 'this', 'that', 'ai', 'library'])
    filtered = [w for w in words if len(w) > 3 and w not in stop_short]
    return '_'.join(filtered)[:200]

def generate_filename(prompt, response, file_type="md", max_length=200):
    prefix = format_timestamp_prefix() + "_"
    combined_text = (prompt + " " + response)[:200]
    info_terms = get_high_info_terms(combined_text, top_n=5)
    snippet = (prompt[:40] + " " + response[:40]).strip()
    snippet_cleaned = clean_text_for_filename(snippet)
    
    name_parts = info_terms + [snippet_cleaned]
    seen = set()
    unique_parts = []
    for part in name_parts:
        if part not in seen:
            seen.add(part)
            unique_parts.append(part)
    
    wct = len(prompt.split())
    sw = len(response.split())
    estimated_duration = round((wct + sw) / 2.5)
    
    base_name = '_'.join(unique_parts).strip('_')
    extra_tokens = f"_wct{wct}_sw{sw}_dur{estimated_duration}"
    leftover_chars = max_length - len(prefix) - len(file_type) - 1
    if len(base_name) + len(extra_tokens) > leftover_chars:
        base_name = base_name[:leftover_chars - len(extra_tokens)]
    full_name = base_name + extra_tokens
    
    return f"{prefix}{full_name}.{file_type}"

def create_file(prompt, response, file_type="md"):
    filename = generate_filename(prompt.strip(), response.strip(), file_type)
    with open(filename, 'w', encoding='utf-8') as f:
        f.write(prompt + "\n\n" + response)
    return filename

def get_download_link(file, file_type="zip"):
    with open(file, "rb") as f:
        b64 = base64.b64encode(f.read()).decode()
    if file_type == "zip":
        return f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(file)}">πŸ“‚ Download {os.path.basename(file)}</a>'
    elif file_type == "mp3":
        return f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">🎡 Download {os.path.basename(file)}</a>'
    elif file_type == "wav":
        return f'<a href="data:audio/wav;base64,{b64}" download="{os.path.basename(file)}">πŸ”Š Download {os.path.basename(file)}</a>'
    elif file_type == "md":
        return f'<a href="data:text/markdown;base64,{b64}" download="{os.path.basename(file)}">πŸ“ Download {os.path.basename(file)}</a>'
    else:
        return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}</a>'

def clean_for_speech(text: str) -> str:
    text = text.replace("\n", " ")
    text = text.replace("</s>", " ")
    text = text.replace("#", "")
    text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text

# ─────────────────────────────────────────────────────────
# 5 MINUTE RESEARCH PAPER FEATURE
# ─────────────────────────────────────────────────────────

def generate_pdf_link(url: str) -> str:
    if "abs" in url:
        pdf_url = url.replace("abs", "pdf")
        if not pdf_url.endswith(".pdf"):
            pdf_url += ".pdf"
        return pdf_url
    return url

def generate_5min_feature_markdown(paper: dict) -> str:
    title = paper.get('title', '')
    summary = paper.get('summary', '')
    authors = paper.get('authors', '')
    date = paper.get('date', '')
    url = paper.get('url', '')
    pdf_link = generate_pdf_link(url)
    title_wc = len(title.split())
    summary_wc = len(summary.split())
    high_info_terms = get_high_info_terms(summary, top_n=15)
    terms_str = ", ".join(high_info_terms)
    rouge_score = round((len(high_info_terms) / max(len(summary.split()), 1)) * 100, 2)
    
    mermaid_code = "```mermaid\nflowchart TD\n"
    for i in range(len(high_info_terms) - 1):
        mermaid_code += f'    T{i+1}["{high_info_terms[i]}"] --> T{i+2}["{high_info_terms[i+1]}"]\n'
    mermaid_code += "```"
    
    md = f"""
## πŸ“„ {title}

**Authors:** {authors}  
**Date:** {date}  
**Word Count (Title):** {title_wc} | **Word Count (Summary):** {summary_wc}  

**Links:** [Abstract]({url}) | [PDF]({pdf_link})

**High Info Terms:** {terms_str}  
**ROUGE Score:** {rouge_score}%

### 🎀 TTF Read Aloud
- **Title:** {title}
- **Key Terms:** {terms_str}
- **ROUGE:** {rouge_score}%

#### Mermaid Graph of Key Concepts
{mermaid_code}

---
"""
    return md

def create_detailed_paper_md(papers: list) -> str:
    md_parts = ["# Detailed Research Paper Summary\n"]
    for idx, paper in enumerate(papers, start=1):
        md_parts.append(generate_5min_feature_markdown(paper))
    return "\n".join(md_parts)

# ─────────────────────────────────────────────────────────
# 4. OPTIMIZED AUDIO GENERATION
# ─────────────────────────────────────────────────────────

async def async_edge_tts_generate(
    text: str,
    voice: str,
    rate: int = 0,
    pitch: int = 0,
    file_format: str = "mp3"
) -> Tuple[Optional[str], float]:
    with PerformanceTimer("tts_generation") as timer:
        text = clean_for_speech(text)
        if not text.strip():
            return None, 0
        
        cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}"
        if cache_key in st.session_state['audio_cache']:
            return st.session_state['audio_cache'][cache_key], 0
        
        try:
            rate_str = f"{rate:+d}%"
            pitch_str = f"{pitch:+d}Hz"
            communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            filename = f"audio_{timestamp}_{random.randint(1000, 9999)}.{file_format}"
            await communicate.save(filename)
            st.session_state['audio_cache'][cache_key] = filename
            return filename, time.time() - timer.start_time
        
        except Exception as e:
            st.error(f"❌ Error generating audio: {str(e)}")
            return None, 0

def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
    result = asyncio.run(async_edge_tts_generate(text, voice, rate, pitch, file_format))
    if isinstance(result, tuple):
        return result[0]
    return result

async def async_save_qa_with_audio(
    question: str,
    answer: str,
    voice: Optional[str] = None
) -> Tuple[str, Optional[str], float, float]:
    voice = voice or st.session_state['tts_voice']
    
    with PerformanceTimer("qa_save") as timer:
        md_start = time.time()
        md_file = create_file(question, answer, "md")
        md_time = time.time() - md_start
        
        audio_file = None
        audio_time = 0
        if st.session_state['enable_audio']:
            audio_text = f"{question}\n\nAnswer: {answer}"
            audio_file, audio_time = await async_edge_tts_generate(
                audio_text,
                voice=voice,
                file_format=st.session_state['audio_format']
            )
        
        return md_file, audio_file, md_time, audio_time

def save_qa_with_audio(question, answer, voice=None):
    if not voice:
        voice = st.session_state['tts_voice']
    
    md_file = create_file(question, answer, "md")
    audio_text = f"{question}\n\nAnswer: {answer}"
    audio_file = speak_with_edge_tts(
        audio_text,
        voice=voice,
        file_format=st.session_state['audio_format']
    )
    return md_file, audio_file

def create_download_link_with_cache(file_path: str, file_type: str = "mp3") -> str:
    with PerformanceTimer("download_link_generation"):
        cache_key = f"dl_{file_path}"
        if cache_key in st.session_state['download_link_cache']:
            return st.session_state['download_link_cache'][cache_key]
        
        try:
            with open(file_path, "rb") as f:
                b64 = base64.b64encode(f.read()).decode()
            filename = os.path.basename(file_path)
            
            if file_type == "mp3":
                link = f'<a href="data:audio/mpeg;base64,{b64}" download="{filename}">🎡 Download {filename}</a>'
            elif file_type == "wav":
                link = f'<a href="data:audio/wav;base64,{b64}" download="{filename}">πŸ”Š Download {filename}</a>'
            elif file_type == "md":
                link = f'<a href="data:text/markdown;base64,{b64}" download="{filename}">πŸ“ Download {filename}</a>'
            else:
                link = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">⬇️ Download {filename}</a>'
            
            st.session_state['download_link_cache'][cache_key] = link
            return link
        
        except Exception as e:
            st.error(f"❌ Error creating download link: {str(e)}")
            return ""

def play_and_download_audio(file_path, file_type="mp3"):
    if file_path and isinstance(file_path, str) and os.path.exists(file_path):
        st.audio(file_path)
        dl_link = get_download_link(file_path, file_type=file_type)
        st.markdown(dl_link, unsafe_allow_html=True)

# ─────────────────────────────────────────────────────────
# 5. RESEARCH / ARXIV FUNCTIONS
# ─────────────────────────────────────────────────────────

def parse_arxiv_refs(ref_text: str):
    if not ref_text:
        return []
    results = []
    current_paper = {}
    lines = ref_text.split('\n')
    
    for i, line in enumerate(lines):
        if line.count('|') == 2:
            if current_paper:
                results.append(current_paper)
                if len(results) >= 20:
                    break
            try:
                header_parts = line.strip('* ').split('|')
                date = header_parts[0].strip()
                title = header_parts[1].strip()
                url_match = re.search(r'(https://arxiv.org/\S+)', line)
                url = url_match.group(1) if url_match else f"paper_{len(results)}"
                
                current_paper = {
                    'date': date,
                    'title': title,
                    'url': url,
                    'authors': '',
                    'summary': '',
                    'full_audio': None,
                    'download_base64': '',
                }
            except Exception as e:
                st.warning(f"⚠️ Error parsing paper header: {str(e)}")
                current_paper = {}
                continue
        elif current_paper:
            if not current_paper['authors']:
                current_paper['authors'] = line.strip('* ')
            else:
                if current_paper['summary']:
                    current_paper['summary'] += ' ' + line.strip()
                else:
                    current_paper['summary'] = line.strip()
    
    if current_paper:
        results.append(current_paper)
    
    return results[:20]

def create_paper_links_md(papers):
    lines = ["# Paper Links\n"]
    for i, p in enumerate(papers, start=1):
        lines.append(f"{i}. **{p['title']}** β€” [Arxiv Link]({p['url']})")
    return "\n".join(lines)

async def create_paper_audio_files(papers, input_question):
    for paper in papers:
        try:
            audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}"
            audio_text = clean_for_speech(audio_text)
            file_format = st.session_state['audio_format']
            audio_file, _ = await async_edge_tts_generate(
                audio_text, 
                voice=st.session_state['tts_voice'], 
                file_format=file_format
            )
            paper['full_audio'] = audio_file
            
            if audio_file:
                ext = file_format
                download_link = create_download_link_with_cache(audio_file, file_type=ext)
                paper['download_base64'] = download_link

        except Exception as e:
            st.warning(f"⚠️ Error processing paper {paper['title']}: {str(e)}")
            paper['full_audio'] = None
            paper['download_base64'] = ''

def display_papers(papers, marquee_settings):
    st.write("## πŸ”Ž Research Papers")
    for i, paper in enumerate(papers, start=1):
        marquee_text = f"πŸ“„ {paper['title']} | πŸ‘€ {paper['authors'][:120]} | πŸ“ {paper['summary'][:200]}"
        display_marquee(marquee_text, marquee_settings, key_suffix=f"paper_{i}")
        
        with st.expander(f"{i}. πŸ“„ {paper['title']}", expanded=True):
            st.markdown(f"**{paper['date']} | {paper['title']}** β€” [Arxiv Link]({paper['url']})")
            pdf_link = generate_pdf_link(paper['url'])
            st.markdown(f"**PDF Link:** [PDF]({pdf_link})")
            st.markdown(f"*Authors:* {paper['authors']}")
            st.markdown(paper['summary'])
            st.markdown(generate_5min_feature_markdown(paper))
            if paper.get('full_audio'):
                st.write("πŸ“š **Paper Audio**")
                st.audio(paper['full_audio'])
                if paper['download_base64']:
                    st.markdown(paper['download_base64'], unsafe_allow_html=True)

def display_papers_in_sidebar(papers):
    st.sidebar.title("🎢 Papers & Audio")
    for i, paper in enumerate(papers, start=1):
        with st.sidebar.expander(f"{i}. {paper['title']}"):
            st.markdown(f"**Arxiv:** [Link]({paper['url']})")
            pdf_link = generate_pdf_link(paper['url'])
            st.markdown(f"**PDF:** [PDF]({pdf_link})")
            if paper['full_audio']:
                st.audio(paper['full_audio'])
                if paper['download_base64']:
                    st.markdown(paper['download_base64'], unsafe_allow_html=True)
            st.markdown(f"**Authors:** {paper['authors']}")
            if paper['summary']:
                st.markdown(f"**Summary:** {paper['summary'][:300]}...")
            st.markdown(generate_5min_feature_markdown(paper))

# ─────────────────────────────────────────────────────────
# 6. ZIP FUNCTION
# ─────────────────────────────────────────────────────────

def create_zip_of_files(md_files, mp3_files, wav_files, input_question):
    md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
    all_files = md_files + mp3_files + wav_files
    if not all_files:
        return None

    all_content = []
    for f in all_files:
        if f.endswith('.md'):
            with open(f, "r", encoding='utf-8') as file:
                all_content.append(file.read())
        elif f.endswith('.mp3') or f.endswith('.wav'):
            basename = os.path.splitext(os.path.basename(f))[0]
            words = basename.replace('_', ' ')
            all_content.append(words)
    
    all_content.append(input_question)
    combined_content = " ".join(all_content)
    info_terms = get_high_info_terms(combined_content, top_n=10)
    
    timestamp = format_timestamp_prefix()
    name_text = '-'.join(term for term in info_terms[:5])  
    short_zip_name = (timestamp + "_" + name_text)[:20] + ".zip"

    with zipfile.ZipFile(short_zip_name, 'w') as z:
        for f in all_files:
            z.write(f)
    return short_zip_name

# ─────────────────────────────────────────────────────────
# 7. MAIN AI LOGIC: LOOKUP & TAB HANDLERS
# ─────────────────────────────────────────────────────────

def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, 
                     titles_summary=True, full_audio=False, useArxiv=True, useArxivAudio=False):
    """Main routine that uses Anthropic (Claude) + Gradio ArXiv RAG pipeline."""
    start = time.time()
    
    # Input validation
    if not q or not q.strip():
        st.error("❌ Please provide a valid question with non-whitespace text.")
        return None

    # Initialize Anthropic client
    client = anthropic.Anthropic(api_key=anthropic_key)

    # --- 1) Claude API Call ---
    try:
        response = client.messages.create(
            model="claude-3-5-sonnet-20240620",  # Updated to a newer model
            max_tokens=1000,
            messages=[
                {"role": "user", "content": q.strip()}
            ]
        )
        st.write("Claude's reply 🧠:")
        result = response.content[0].text
        st.markdown(result)

        # Save & produce audio
        md_file, audio_file = save_qa_with_audio(q, result)
        st.subheader("πŸ“ Main Response Audio")
        play_and_download_audio(audio_file, st.session_state['audio_format'])

    except anthropic.BadRequestError as e:
        st.error(f"❌ Anthropic API error: {str(e)}")
        return None
    except Exception as e:
        st.error(f"❌ Unexpected error during Claude API call: {str(e)}")
        return None

    # --- 2) ArXiv RAG Integration ---
    if useArxiv:
        try:
            q_with_result = q + " " + result  # Fortify prompt with Claude's answer
            st.write('Running Arxiv RAG with Claude inputs.')
            gradio_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
            refs = gradio_client.predict(
                q_with_result, 
                10, 
                "Semantic Search", 
                "mistralai/Mixtral-8x7B-Instruct-v0.1",
                api_name="/update_with_rag_md"
            )[0]
            
            result = f"πŸ”Ž {q}\n\n{refs}"
            md_file, audio_file = save_qa_with_audio(q, result)
            st.subheader("πŸ“ Main Response Audio with ArXiv")
            play_and_download_audio(audio_file, st.session_state['audio_format'])

            # --- 3) Parse + Handle Papers ---
            papers = parse_arxiv_refs(refs)
            if papers:
                paper_links = create_paper_links_md(papers)
                links_file = create_file(q, paper_links, "md")
                st.markdown(paper_links)

                detailed_md = create_detailed_paper_md(papers)
                detailed_file = create_file(q, detailed_md, "md")
                st.markdown(detailed_md)

                if useArxivAudio:
                    asyncio.run(create_paper_audio_files(papers, input_question=q))

                display_papers(papers, get_marquee_settings())
                display_papers_in_sidebar(papers)
            else:
                st.warning("No papers found in the response.")

        except Exception as e:
            st.error(f"❌ Error during ArXiv processing: {str(e)}")

    # --- 4) Claude API with ArXiv Papers for App Generation ---
    try:
        user_input = (q + '\n\n' + 
                      'Use the reference papers below to answer the question by creating a '
                      'Python Streamlit app.py and requirements.txt with Python libraries '
                      'for creating a single app.py application that answers the questions '
                      'with working code to demonstrate.\n\n' + (result or ""))
        response = client.messages.create(
            model="claude-3-5-sonnet-20240620",  # Updated model
            max_tokens=1000,
            messages=[
                {"role": "user", "content": user_input}
            ]
        )
        r2 = response.content[0].text
        st.write("Claude's reply with app code 🧠:")
        st.markdown(r2)
        
        # Save the app code response
        md_file, audio_file = save_qa_with_audio(q, r2)
        st.subheader("πŸ“ App Code Response Audio")
        play_and_download_audio(audio_file, st.session_state['audio_format'])

    except anthropic.BadRequestError as e:
        st.error(f"❌ Anthropic API error during app code generation: {str(e)}")
    except Exception as e:
        st.error(f"❌ Unexpected error during app code generation: {str(e)}")

    elapsed = time.time() - start
    st.write(f"**Total Elapsed:** {elapsed:.2f} s")
    return result

async def process_voice_input(text):
    if not text:
        return
    st.subheader("πŸ” Search Results")
    
    result = perform_ai_lookup(
        text, 
        vocal_summary=True,
        extended_refs=False,
        titles_summary=True,
        full_audio=True
    )
    
    if result:
        md_file, audio_file, md_time, audio_time = await async_save_qa_with_audio(text, result)
        st.subheader("πŸ“ Generated Files")
        st.write(f"**Markdown:** {md_file} (saved in {md_time:.2f}s)")
        if audio_file:
            st.write(f"**Audio:** {audio_file} (generated in {audio_time:.2f}s)")
            st.audio(audio_file)
            dl_link = create_download_link_with_cache(audio_file, file_type=st.session_state['audio_format'])
            st.markdown(dl_link, unsafe_allow_html=True)

def display_voice_tab():
    st.sidebar.markdown("### 🎀 Voice Settings")
    caption_female = 'Top: 🌸 **Aria** – 🎢 **Jenny** – 🌺 **Sonia** – 🌌 **Natasha** – 🌷 **Clara**'
    caption_male   = 'Bottom: 🌟 **Guy** – πŸ› οΈ **Ryan** – 🎻 **William** – 🌟 **Liam**'
    
    try:
        st.sidebar.image('Group Picture - Voices.png', caption=caption_female + ' | ' + caption_male)
    except:
        st.sidebar.write('.')

    selected_voice = st.sidebar.selectbox(
        "πŸ‘„ Select TTS Voice:",
        options=EDGE_TTS_VOICES,
        index=EDGE_TTS_VOICES.index(st.session_state['tts_voice'])
    )
    
    st.sidebar.markdown("""
    # πŸŽ™οΈ Voice Character Agent Selector 🎭
    *Female Voices*:
    - 🌸 **Aria** – Elegant, creative storytelling  
    - 🎢 **Jenny** – Friendly, conversational  
    - 🌺 **Sonia** – Bold, confident  
    - 🌌 **Natasha** – Sophisticated, mysterious  
    - 🌷 **Clara** – Cheerful, empathetic  

    *Male Voices*:
    - 🌟 **Guy** – Authoritative, versatile  
    - πŸ› οΈ **Ryan** – Approachable, casual  
    - 🎻 **William** – Classic, scholarly  
    - 🌟 **Liam** – Energetic, engaging
    """)
    
    st.markdown("### πŸ”Š Audio Format")
    selected_format = st.radio(
        "Choose Audio Format:",
        options=["MP3", "WAV"],
        index=0
    )

    if selected_voice != st.session_state['tts_voice']:
        st.session_state['tts_voice'] = selected_voice
        st.rerun()
    if selected_format.lower() != st.session_state['audio_format']:
        st.session_state['audio_format'] = selected_format.lower()
        st.rerun()

    user_text = st.text_area("πŸ’¬ Message:", height=100)
    user_text = user_text.strip().replace('\n', ' ')

    if st.button("πŸ“¨ Send"):
        asyncio.run(process_voice_input(user_text))

    st.subheader("πŸ“œ Chat History")
    for c in st.session_state.chat_history:
        st.write("**You:**", c["user"])
        st.write("**Response:**", c["claude"])

def display_file_history_in_sidebar():
    st.sidebar.markdown("---")
    st.sidebar.markdown("### πŸ“‚ File History")

    md_files = glob.glob("*.md")
    mp3_files = glob.glob("*.mp3")
    wav_files = glob.glob("*.wav")
    all_files = md_files + mp3_files + wav_files

    if not all_files:
        st.sidebar.write("No files found.")
        return

    all_files = sorted(all_files, key=os.path.getmtime, reverse=True)

    grouped_files = {}
    for f in all_files:
        fname = os.path.basename(f)
        prefix = '_'.join(fname.split('_')[:6])
        if prefix not in grouped_files:
            grouped_files[prefix] = {'md': [], 'audio': [], 'loaded': False}
        
        ext = os.path.splitext(fname)[1].lower()
        if ext == '.md':
            grouped_files[prefix]['md'].append(f)
        elif ext in ['.mp3', '.wav']:
            grouped_files[prefix]['audio'].append(f)

    sorted_groups = sorted(grouped_files.items(), key=lambda x: x[0], reverse=True)

    col1, col4 = st.sidebar.columns(2)
    with col1:
        if st.button("πŸ—‘ Delete All"):
            for f in all_files:
                os.remove(f)
            st.rerun()
    with col4:
        if st.button("⬇️ Zip All"):
            zip_name = create_zip_of_files(md_files, mp3_files, wav_files, 
                                         st.session_state.get('last_query', ''))
            if zip_name:
                st.sidebar.markdown(get_download_link(zip_name, "zip"), 
                                  unsafe_allow_html=True)

    for prefix, files in sorted_groups:
        preview = ""
        if files['md']:
            with open(files['md'][0], "r", encoding="utf-8") as f:
                preview = f.read(200).replace("\n", " ")
                if len(preview) > 200:
                    preview += "..."
        group_key = f"group_{prefix}"
        if group_key not in st.session_state:
            st.session_state[group_key] = False

        with st.sidebar.expander(f"πŸ“‘ Query Group: {prefix}"):
            st.write("**Preview:**")
            st.write(preview)
            
            if st.button("πŸ“– View Full Content", key=f"btn_{prefix}"):
                st.session_state[group_key] = True

            if st.session_state[group_key]:
                for md_file in files['md']:
                    with open(md_file, "r", encoding="utf-8") as f:
                        content = f.read()
                    st.markdown("**Full Content:**")
                    st.markdown(content)
                    st.markdown(get_download_link(md_file, file_type="md"), 
                              unsafe_allow_html=True)

                for audio_file in files['audio']:
                    ext = os.path.splitext(audio_file)[1].replace('.', '')
                    st.audio(audio_file)
                    st.markdown(get_download_link(audio_file, file_type=ext), 
                              unsafe_allow_html=True)

def main():
    update_marquee_settings_ui()
    marquee_settings = get_marquee_settings()

    display_marquee(
        st.session_state['marquee_content'], 
        {**marquee_settings, "font-size": "28px", "lineHeight": "50px"},
        key_suffix="welcome"
    )

    tab_main = st.radio("Action:", ["🎀 Voice", "πŸ“Έ Media", "πŸ” ArXiv", "πŸ“ Editor"], 
                        horizontal=True)
    
    useArxiv = st.checkbox("Search Arxiv for Research Paper Answers", value=True)
    useArxivAudio = st.checkbox("Generate Audio File for Research Paper Answers", value=False)

    mycomponent = components.declare_component("mycomponent", path="mycomponent")
    val = mycomponent(my_input_value="Hello from MyComponent")

    if val:
        val_stripped = val.replace('\\n', ' ')
        edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100)
        run_option = st.selectbox("Model:", ["Arxiv", "Other (demo)"])
        col1, col2 = st.columns(2)
        with col1:
            autorun = st.checkbox("βš™ AutoRun", value=True)
        with col2:
            full_audio = st.checkbox("πŸ“šFullAudio", value=False)

        input_changed = (val != st.session_state.old_val)

        if autorun and input_changed:
            st.session_state.old_val = val
            st.session_state.last_query = edited_input
            perform_ai_lookup(edited_input, 
                              vocal_summary=True, 
                              extended_refs=False, 
                              titles_summary=True, 
                              full_audio=full_audio, useArxiv=useArxiv, useArxivAudio=useArxivAudio)
        else:
            if st.button("β–Ά Run"):
                st.session_state.old_val = val
                st.session_state.last_query = edited_input
                perform_ai_lookup(edited_input, 
                                  vocal_summary=True, 
                                  extended_refs=False, 
                                  titles_summary=True, 
                                  full_audio=full_audio, useArxiv=useArxiv, useArxivAudio=useArxivAudio)

    if tab_main == "πŸ” ArXiv":
        st.subheader("πŸ” Query ArXiv")
        q = st.text_input("πŸ” Query:", key="arxiv_query")
        
        st.markdown("### πŸŽ› Options")
        vocal_summary = st.checkbox("πŸŽ™ShortAudio", value=True, key="option_vocal_summary")
        extended_refs = st.checkbox("πŸ“œLongRefs", value=False, key="option_extended_refs")
        titles_summary = st.checkbox("πŸ”–TitlesOnly", value=True, key="option_titles_summary")
        full_audio = st.checkbox("πŸ“šFullAudio", value=False, key="option_full_audio")
        full_transcript = st.checkbox("🧾FullTranscript", value=False, key="option_full_transcript")
        
        if q and st.button("πŸ”Run"):
            st.session_state.last_query = q
            result = perform_ai_lookup(q, 
                                       vocal_summary=vocal_summary, 
                                       extended_refs=extended_refs, 
                                       titles_summary=titles_summary, 
                                       full_audio=full_audio, useArxiv=useArxiv, useArxivAudio=useArxivAudio)
            if full_transcript and result:
                create_file(q, result, "md")

    elif tab_main == "🎀 Voice":
        display_voice_tab()

    elif tab_main == "πŸ“Έ Media":
        st.header("πŸ“Έ Media Gallery")
        tabs = st.tabs(["🎡 Audio", "πŸ–Ό Images", "πŸŽ₯ Video"])
        
        with tabs[0]:
            st.subheader("🎡 Audio Files")
            audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
            if audio_files:
                for a in audio_files:
                    with st.expander(os.path.basename(a)):
                        st.audio(a)
                        ext = os.path.splitext(a)[1].replace('.', '')
                        dl_link = get_download_link(a, file_type=ext)
                        st.markdown(dl_link, unsafe_allow_html=True)
            else:
                st.write("No audio files found.")
        
        with tabs[1]:
            st.subheader("πŸ–Ό Image Files")
            imgs = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg")
            if imgs:
                c = st.slider("Cols", 1, 5, 3, key="cols_images")
                cols = st.columns(c)
                for i, f in enumerate(imgs):
                    with cols[i % c]:
                        st.image(Image.open(f), use_container_width=True)
            else:
                st.write("No images found.")
        
        with tabs[2]:
            st.subheader("πŸŽ₯ Video Files")
            vids = glob.glob("*.mp4") + glob.glob("*.mov") + glob.glob("*.avi")
            if vids:
                for v in vids:
                    with st.expander(os.path.basename(v)):
                        st.video(v)
            else:
                st.write("No videos found.")

    elif tab_main == "πŸ“ Editor":
        st.write("### πŸ“ File Editor (Minimal Demo)")
        st.write("Select or create a file to edit. More advanced features can be added as needed.")

    display_file_history_in_sidebar()
    log_performance_metrics()

    st.markdown("""
    <style>
        .main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
        .stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
        .stButton>button { margin-right: 0.5rem; }
    </style>
    """, unsafe_allow_html=True)

    if st.session_state.should_rerun:
        st.session_state.should_rerun = False
        st.rerun()

if __name__ == "__main__":
    main()