awacke1 commited on
Commit
57a1ea8
·
verified ·
1 Parent(s): 9e2ef59

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +118 -877
app.py CHANGED
@@ -1,10 +1,15 @@
 
 
 
 
 
 
1
  import streamlit as st
2
- import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
3
  import plotly.graph_objects as go
4
  import streamlit.components.v1 as components
5
  from datetime import datetime
6
  from audio_recorder_streamlit import audio_recorder
7
- from bs4 import BeautifulSoup
8
  from collections import defaultdict, deque, Counter
9
  from dotenv import load_dotenv
10
  from gradio_client import Client
@@ -16,541 +21,60 @@ from urllib.parse import quote
16
  from xml.etree import ElementTree as ET
17
  from openai import OpenAI
18
  import extra_streamlit_components as stx
19
- from streamlit.runtime.scriptrunner import get_script_run_ctx
20
  import asyncio
21
  import edge_tts
 
22
 
23
- # 🎯 1. Core Configuration & Setup
24
  st.set_page_config(
25
  page_title="🚲TalkingAIResearcher🏆",
26
  page_icon="🚲🏆",
27
  layout="wide",
28
  initial_sidebar_state="auto",
29
- menu_items={
30
- 'Get Help': 'https://huggingface.co/awacke1',
31
- 'Report a bug': 'https://huggingface.co/spaces/awacke1',
32
- 'About': "🚲TalkingAIResearcher🏆"
33
- }
34
  )
35
- load_dotenv()
36
 
37
- # Add available English voices for Edge TTS
 
 
 
 
 
 
 
38
  EDGE_TTS_VOICES = [
39
- "en-US-AriaNeural", # Default voice
40
- "en-US-GuyNeural",
41
  "en-US-JennyNeural",
42
  "en-GB-SoniaNeural",
43
- "en-GB-RyanNeural",
44
- "en-AU-NatashaNeural",
45
- "en-AU-WilliamNeural",
46
- "en-CA-ClaraNeural",
47
- "en-CA-LiamNeural"
48
  ]
49
 
50
- # Initialize session state variables
51
- if 'tts_voice' not in st.session_state:
52
- st.session_state['tts_voice'] = EDGE_TTS_VOICES[0] # Default voice
53
- if 'audio_format' not in st.session_state:
54
- st.session_state['audio_format'] = 'mp3' # 🆕 Default audio format
55
-
56
- # 🔑 2. API Setup & Clients
57
- openai_api_key = os.getenv('OPENAI_API_KEY', "")
58
- anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
59
- xai_key = os.getenv('xai',"")
60
- if 'OPENAI_API_KEY' in st.secrets:
61
- openai_api_key = st.secrets['OPENAI_API_KEY']
62
- if 'ANTHROPIC_API_KEY' in st.secrets:
63
- anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
64
-
65
- openai.api_key = openai_api_key
66
- claude_client = anthropic.Anthropic(api_key=anthropic_key)
67
- openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
68
- HF_KEY = os.getenv('HF_KEY')
69
- API_URL = os.getenv('API_URL')
70
-
71
- # 📝 3. Session State Management
72
- if 'transcript_history' not in st.session_state:
73
- st.session_state['transcript_history'] = []
74
- if 'chat_history' not in st.session_state:
75
- st.session_state['chat_history'] = []
76
- if 'openai_model' not in st.session_state:
77
- st.session_state['openai_model'] = "gpt-4o-2024-05-13"
78
- if 'messages' not in st.session_state:
79
- st.session_state['messages'] = []
80
- if 'last_voice_input' not in st.session_state:
81
- st.session_state['last_voice_input'] = ""
82
- if 'editing_file' not in st.session_state:
83
- st.session_state['editing_file'] = None
84
- if 'edit_new_name' not in st.session_state:
85
- st.session_state['edit_new_name'] = ""
86
- if 'edit_new_content' not in st.session_state:
87
- st.session_state['edit_new_content'] = ""
88
- if 'viewing_prefix' not in st.session_state:
89
- st.session_state['viewing_prefix'] = None
90
- if 'should_rerun' not in st.session_state:
91
- st.session_state['should_rerun'] = False
92
- if 'old_val' not in st.session_state:
93
- st.session_state['old_val'] = None
94
- if 'last_query' not in st.session_state:
95
- st.session_state['last_query'] = "" # 🆕 Store the last query for zip naming
96
-
97
- # 🎨 4. Custom CSS
98
- st.markdown("""
99
- <style>
100
- .main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
101
- .stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
102
- .stButton>button {
103
- margin-right: 0.5rem;
104
- }
105
- </style>
106
- """, unsafe_allow_html=True)
107
-
108
  FILE_EMOJIS = {
109
  "md": "📝",
110
  "mp3": "🎵",
111
- "wav": "🔊" # 🆕 Add emoji for WAV
 
 
 
 
 
112
  }
113
 
114
- # 🧠 5. High-Information Content Extraction
115
- def get_high_info_terms(text: str, top_n=10) -> list:
116
- """Extract high-information terms from text, including key phrases."""
117
- stop_words = set([
118
- 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with',
119
- 'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were',
120
- 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would',
121
- 'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these',
122
- 'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who',
123
- 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most',
124
- 'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there'
125
- ])
126
-
127
- key_phrases = [
128
- 'artificial intelligence', 'machine learning', 'deep learning', 'neural network',
129
- 'personal assistant', 'natural language', 'computer vision', 'data science',
130
- 'reinforcement learning', 'knowledge graph', 'semantic search', 'time series',
131
- 'large language model', 'transformer model', 'attention mechanism',
132
- 'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology',
133
- 'cognitive science', 'human computer', 'decision making', 'arxiv search',
134
- 'research paper', 'scientific study', 'empirical analysis'
135
- ]
136
-
137
- # Extract bi-grams and uni-grams
138
- words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower())
139
- bi_grams = [' '.join(pair) for pair in zip(words, words[1:])]
140
- combined = words + bi_grams
141
-
142
- # Filter out stop words and short words
143
- filtered = [
144
- term for term in combined
145
- if term not in stop_words
146
- and len(term.split()) <= 2 # Limit to uni-grams and bi-grams
147
- and any(c.isalpha() for c in term)
148
- ]
149
-
150
- # Count frequencies
151
- counter = Counter(filtered)
152
- most_common = [term for term, freq in counter.most_common(top_n)]
153
- return most_common
154
-
155
- def clean_text_for_filename(text: str) -> str:
156
- """Remove punctuation and short filler words, return a compact string."""
157
- text = text.lower()
158
- text = re.sub(r'[^\w\s-]', '', text)
159
- words = text.split()
160
- stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about'])
161
- filtered = [w for w in words if len(w)>3 and w not in stop_short]
162
- return '_'.join(filtered)[:200]
163
-
164
- # 📁 6. File Operations
165
- def generate_filename(prompt, response, file_type="md"):
166
- """
167
- Generate filename with meaningful terms and short dense clips from prompt & response.
168
- The filename should be about 150 chars total, include high-info terms, and a clipped snippet.
169
- """
170
- prefix = datetime.now().strftime("%y%m_%H%M") + "_"
171
- combined = (prompt + " " + response).strip()
172
- info_terms = get_high_info_terms(combined, top_n=10)
173
-
174
- # Include a short snippet from prompt and response
175
- snippet = (prompt[:100] + " " + response[:100]).strip()
176
- snippet_cleaned = clean_text_for_filename(snippet)
177
-
178
- # Combine info terms and snippet
179
- name_parts = info_terms + [snippet_cleaned]
180
- full_name = '_'.join(name_parts)
181
-
182
- # Trim to ~150 chars
183
- if len(full_name) > 150:
184
- full_name = full_name[:150]
185
-
186
- filename = f"{prefix}{full_name}.{file_type}"
187
- return filename
188
-
189
- def create_file(prompt, response, file_type="md"):
190
- """Create file with intelligent naming"""
191
- filename = generate_filename(prompt.strip(), response.strip(), file_type)
192
- with open(filename, 'w', encoding='utf-8') as f:
193
- f.write(prompt + "\n\n" + response)
194
- return filename
195
-
196
- def get_download_link(file, file_type="zip"):
197
- """Generate download link for file"""
198
- with open(file, "rb") as f:
199
- b64 = base64.b64encode(f.read()).decode()
200
- if file_type == "zip":
201
- return f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>'
202
- elif file_type == "mp3":
203
- return f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">🎵 Download {os.path.basename(file)}</a>'
204
- elif file_type == "wav":
205
- return f'<a href="data:audio/wav;base64,{b64}" download="{os.path.basename(file)}">🔊 Download {os.path.basename(file)}</a>' # 🆕 WAV download link
206
- elif file_type == "md":
207
- return f'<a href="data:text/markdown;base64,{b64}" download="{os.path.basename(file)}">📝 Download {os.path.basename(file)}</a>'
208
- else:
209
- return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}</a>'
210
-
211
- # 🔊 7. Audio Processing
212
- def clean_for_speech(text: str) -> str:
213
- """Clean text for speech synthesis"""
214
- text = text.replace("\n", " ")
215
- text = text.replace("</s>", " ")
216
- text = text.replace("#", "")
217
- text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
218
- text = re.sub(r"\s+", " ", text).strip()
219
- return text
220
-
221
  @st.cache_resource
222
- def speech_synthesis_html(result):
223
- """Create HTML for speech synthesis"""
224
- html_code = f"""
225
- <html><body>
226
- <script>
227
- var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
228
- window.speechSynthesis.speak(msg);
229
- </script>
230
- </body></html>
231
- """
232
- components.html(html_code, height=0)
233
-
234
- async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
235
- """Generate audio using Edge TTS"""
236
- text = clean_for_speech(text)
237
- if not text.strip():
238
- return None
239
- rate_str = f"{rate:+d}%"
240
- pitch_str = f"{pitch:+d}Hz"
241
- communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
242
- out_fn = generate_filename(text, text, file_type=file_format)
243
- await communicate.save(out_fn)
244
- return out_fn
245
-
246
- def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
247
- """Wrapper for edge TTS generation"""
248
- return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, file_format))
249
-
250
- def play_and_download_audio(file_path, file_type="mp3"):
251
- """Play and provide download link for audio"""
252
- if file_path and os.path.exists(file_path):
253
- if file_type == "mp3":
254
- st.audio(file_path)
255
- elif file_type == "wav":
256
- st.audio(file_path)
257
- dl_link = get_download_link(file_path, file_type=file_type)
258
- st.markdown(dl_link, unsafe_allow_html=True)
259
-
260
- # 🎬 8. Media Processing
261
- def process_image(image_path, user_prompt):
262
- """Process image with GPT-4V"""
263
- with open(image_path, "rb") as imgf:
264
- image_data = imgf.read()
265
- b64img = base64.b64encode(image_data).decode("utf-8")
266
- resp = openai_client.chat.completions.create(
267
- model=st.session_state["openai_model"],
268
- messages=[
269
- {"role": "system", "content": "You are a helpful assistant."},
270
- {"role": "user", "content": [
271
- {"type": "text", "text": user_prompt},
272
- {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
273
- ]}
274
- ],
275
- temperature=0.0,
276
- )
277
- return resp.choices[0].message.content
278
-
279
- def process_audio_file(audio_path):
280
- """Process audio with Whisper"""
281
- with open(audio_path, "rb") as f:
282
- transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f)
283
- st.session_state.messages.append({"role": "user", "content": transcription.text})
284
- return transcription.text
285
-
286
- def process_video(video_path, seconds_per_frame=1):
287
- """Extract frames from video"""
288
- vid = cv2.VideoCapture(video_path)
289
- total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
290
- fps = vid.get(cv2.CAP_PROP_FPS)
291
- skip = int(fps*seconds_per_frame)
292
- frames_b64 = []
293
- for i in range(0, total, skip):
294
- vid.set(cv2.CAP_PROP_POS_FRAMES, i)
295
- ret, frame = vid.read()
296
- if not ret:
297
- break
298
- _, buf = cv2.imencode(".jpg", frame)
299
- frames_b64.append(base64.b64encode(buf).decode("utf-8"))
300
- vid.release()
301
- return frames_b64
302
-
303
- def process_video_with_gpt(video_path, prompt):
304
- """Analyze video frames with GPT-4V"""
305
- frames = process_video(video_path)
306
- resp = openai_client.chat.completions.create(
307
- model=st.session_state["openai_model"],
308
- messages=[
309
- {"role":"system","content":"Analyze video frames."},
310
- {"role":"user","content":[
311
- {"type":"text","text":prompt},
312
- *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
313
- ]}
314
- ]
315
- )
316
- return resp.choices[0].message.content
317
-
318
- # 🤖 9. AI Model Integration
319
-
320
- def save_full_transcript(query, text):
321
- """Save full transcript of Arxiv results as a file."""
322
- create_file(query, text, "md")
323
-
324
- def parse_arxiv_refs(ref_text: str):
325
- """
326
- Parse papers by finding lines with two pipe characters as title lines.
327
- Returns list of paper dictionaries with audio files.
328
- """
329
- if not ref_text:
330
- return []
331
-
332
- results = []
333
- current_paper = {}
334
- lines = ref_text.split('\n')
335
-
336
- for i, line in enumerate(lines):
337
- # Check if this is a title line (contains exactly 2 pipe characters)
338
- if line.count('|') == 2:
339
- # If we have a previous paper, add it to results
340
- if current_paper:
341
- results.append(current_paper)
342
- if len(results) >= 20: # Limit to 20 papers
343
- break
344
-
345
- # Parse new paper header
346
- try:
347
- # Remove ** and split by |
348
- header_parts = line.strip('* ').split('|')
349
- date = header_parts[0].strip()
350
- title = header_parts[1].strip()
351
- # Extract arXiv URL if present
352
- url_match = re.search(r'(https://arxiv.org/\S+)', line)
353
- url = url_match.group(1) if url_match else f"paper_{len(results)}"
354
-
355
- current_paper = {
356
- 'date': date,
357
- 'title': title,
358
- 'url': url,
359
- 'authors': '',
360
- 'summary': '',
361
- 'content_start': i + 1 # Track where content begins
362
- }
363
- except Exception as e:
364
- st.warning(f"Error parsing paper header: {str(e)}")
365
- current_paper = {}
366
- continue
367
-
368
- # If we have a current paper and this isn't a title line, add to content
369
- elif current_paper:
370
- if not current_paper['authors']: # First line after title is authors
371
- current_paper['authors'] = line.strip('* ')
372
- else: # Rest is summary
373
- if current_paper['summary']:
374
- current_paper['summary'] += ' ' + line.strip()
375
- else:
376
- current_paper['summary'] = line.strip()
377
-
378
- # Don't forget the last paper
379
- if current_paper:
380
- results.append(current_paper)
381
-
382
- return results[:20] # Ensure we return maximum 20 papers
383
-
384
- def create_paper_audio_files(papers, input_question):
385
- """
386
- Create audio files for each paper's content and add file paths to paper dict.
387
- Also, display each audio as it's generated.
388
- """
389
- # Collect all content for combined summary
390
- combined_titles = []
391
-
392
- for paper in papers:
393
- try:
394
- # Generate audio for full content only
395
- full_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}"
396
- full_text = clean_for_speech(full_text)
397
- # Determine file format based on user selection
398
- file_format = st.session_state['audio_format']
399
- full_file = speak_with_edge_tts(full_text, voice=st.session_state['tts_voice'], file_format=file_format)
400
- paper['full_audio'] = full_file
401
-
402
- # Display the audio immediately after generation
403
- st.write(f"### {FILE_EMOJIS.get(file_format, '')} {os.path.basename(full_file)}")
404
- play_and_download_audio(full_file, file_type=file_format)
405
-
406
- combined_titles.append(paper['title'])
407
-
408
- except Exception as e:
409
- st.warning(f"Error generating audio for paper {paper['title']}: {str(e)}")
410
- paper['full_audio'] = None
411
-
412
- # After all individual audios, create a combined summary audio
413
- if combined_titles:
414
- combined_text = f"Here are the titles of the papers related to your query: {'; '.join(combined_titles)}. Your original question was: {input_question}"
415
- file_format = st.session_state['audio_format']
416
- combined_file = speak_with_edge_tts(combined_text, voice=st.session_state['tts_voice'], file_format=file_format)
417
- st.write(f"### {FILE_EMOJIS.get(file_format, '')} Combined Summary Audio")
418
- play_and_download_audio(combined_file, file_type=file_format)
419
- papers.append({'title': 'Combined Summary', 'full_audio': combined_file})
420
-
421
- def display_papers(papers):
422
- """
423
- Display papers with their audio controls using URLs as unique keys.
424
- """
425
- st.write("## Research Papers")
426
- papercount=0
427
- for idx, paper in enumerate(papers):
428
- papercount = papercount + 1
429
- if (papercount<=20):
430
- with st.expander(f"{papercount}. 📄 {paper['title']}", expanded=True):
431
- st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**")
432
- st.markdown(f"*{paper['authors']}*")
433
- st.markdown(paper['summary'])
434
-
435
- # Single audio control for full content
436
- if paper.get('full_audio'):
437
- st.write("📚 Paper Audio")
438
- file_ext = os.path.splitext(paper['full_audio'])[1].lower().strip('.')
439
- if file_ext == "mp3":
440
- st.audio(paper['full_audio'])
441
- elif file_ext == "wav":
442
- st.audio(paper['full_audio'])
443
-
444
- def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
445
- titles_summary=True, full_audio=False):
446
- """Perform Arxiv search with audio generation per paper."""
447
- start = time.time()
448
-
449
- # Query the HF RAG pipeline
450
- client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
451
- refs = client.predict(q, 20, "Semantic Search",
452
- "mistralai/Mixtral-8x7B-Instruct-v0.1",
453
- api_name="/update_with_rag_md")[0]
454
- r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1",
455
- True, api_name="/ask_llm")
456
-
457
- # Combine for final text output
458
- result = f"### 🔎 {q}\n\n{r2}\n\n{refs}"
459
- st.markdown(result)
460
-
461
- # Parse and process papers
462
- papers = parse_arxiv_refs(refs)
463
- if papers:
464
- create_paper_audio_files(papers, input_question=q)
465
- display_papers(papers)
466
- else:
467
- st.warning("No papers found in the response.")
468
 
469
- elapsed = time.time()-start
470
- st.write(f"**Total Elapsed:** {elapsed:.2f} s")
471
-
472
- # Save full transcript
473
- create_file(q, result, "md")
474
- return result
475
-
476
- def process_with_gpt(text):
477
- """Process text with GPT-4"""
478
- if not text:
479
- return
480
- st.session_state.messages.append({"role":"user","content":text})
481
- with st.chat_message("user"):
482
- st.markdown(text)
483
- with st.chat_message("assistant"):
484
- c = openai_client.chat.completions.create(
485
- model=st.session_state["openai_model"],
486
- messages=st.session_state.messages,
487
- stream=False
488
- )
489
- ans = c.choices[0].message.content
490
- st.write("GPT-4o: " + ans)
491
- create_file(text, ans, "md")
492
- st.session_state.messages.append({"role":"assistant","content":ans})
493
- return ans
494
-
495
- def process_with_claude(text):
496
- """Process text with Claude"""
497
- if not text:
498
- return
499
- with st.chat_message("user"):
500
- st.markdown(text)
501
- with st.chat_message("assistant"):
502
- r = claude_client.messages.create(
503
- model="claude-3-sonnet-20240229",
504
- max_tokens=1000,
505
- messages=[{"role":"user","content":text}]
506
- )
507
- ans = r.content[0].text
508
- st.write("Claude-3.5: " + ans)
509
- create_file(text, ans, "md")
510
- st.session_state.chat_history.append({"user":text,"claude":ans})
511
- return ans
512
-
513
- # 📂 10. File Management
514
- def create_zip_of_files(md_files, mp3_files, wav_files, input_question):
515
- """Create zip with intelligent naming based on top 10 common words."""
516
- # Exclude 'readme.md'
517
- md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
518
- all_files = md_files + mp3_files + wav_files
519
- if not all_files:
520
- return None
521
-
522
- # Collect content for high-info term extraction
523
- all_content = []
524
- for f in all_files:
525
- if f.endswith('.md'):
526
- with open(f, 'r', encoding='utf-8') as file:
527
- all_content.append(file.read())
528
- elif f.endswith('.mp3') or f.endswith('.wav'):
529
- # Replace underscores with spaces and extract basename without extension
530
- basename = os.path.splitext(os.path.basename(f))[0]
531
- words = basename.replace('_', ' ')
532
- all_content.append(words)
533
-
534
- # Include the input question
535
- all_content.append(input_question)
536
-
537
- combined_content = " ".join(all_content)
538
- info_terms = get_high_info_terms(combined_content, top_n=10)
539
-
540
- timestamp = datetime.now().strftime("%y%m_%H%M")
541
- name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:10])
542
- zip_name = f"{timestamp}_{name_text}.zip"
543
-
544
- with zipfile.ZipFile(zip_name,'w') as z:
545
- for f in all_files:
546
- z.write(f)
547
-
548
- return zip_name
549
 
550
  def load_files_for_sidebar():
551
- """Load and group files for sidebar display based on first 9 characters of filename"""
552
  md_files = glob.glob("*.md")
553
- mp3_files = glob.glob("*.mp3")
554
  wav_files = glob.glob("*.wav")
555
 
556
  md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
@@ -558,398 +82,115 @@ def load_files_for_sidebar():
558
 
559
  groups = defaultdict(list)
560
  for f in all_files:
561
- # Get first 9 characters of filename (timestamp) as group name
562
  basename = os.path.basename(f)
563
  group_name = basename[:9] if len(basename) >= 9 else 'Other'
564
  groups[group_name].append(f)
565
 
566
- # Sort groups based on latest file modification time
567
- sorted_groups = sorted(groups.items(), key=lambda x: max(os.path.getmtime(f) for f in x[1]), reverse=True)
568
- return sorted_groups
569
-
570
- def extract_keywords_from_md(files):
571
- """Extract keywords from markdown files"""
572
- text = ""
573
- for f in files:
574
- if f.endswith(".md"):
575
- c = open(f,'r',encoding='utf-8').read()
576
- text += " " + c
577
- return get_high_info_terms(text, top_n=5)
578
 
579
  def display_file_manager_sidebar(groups_sorted):
580
- """Display file manager in sidebar with timestamp-based groups"""
581
- st.sidebar.title("🎵 Audio & Docs Manager")
582
 
583
- all_md = []
584
- all_mp3 = []
585
- all_wav = []
586
- for group_name, files in groups_sorted:
587
  for f in files:
588
- if f.endswith(".md"):
589
- all_md.append(f)
590
- elif f.endswith(".mp3"):
591
- all_mp3.append(f)
592
- elif f.endswith(".wav"):
593
- all_wav.append(f)
594
-
595
- top_bar = st.sidebar.columns(4)
596
- with top_bar[0]:
597
- if st.button("🗑 DelAllMD"):
598
- for f in all_md:
599
- os.remove(f)
600
  st.session_state.should_rerun = True
601
- with top_bar[1]:
602
- if st.button("🗑 DelAllMP3"):
603
- for f in all_mp3:
604
- os.remove(f)
605
  st.session_state.should_rerun = True
606
- with top_bar[2]:
607
- if st.button("🗑 DelAllWAV"):
608
- for f in all_wav:
609
- os.remove(f)
610
  st.session_state.should_rerun = True
611
- with top_bar[3]:
612
- if st.button("⬇️ ZipAll"):
613
- zip_name = create_zip_of_files(all_md, all_mp3, all_wav, input_question=st.session_state.get('last_query', ''))
 
614
  if zip_name:
615
- st.sidebar.markdown(get_download_link(zip_name, file_type="zip"), unsafe_allow_html=True)
616
 
 
617
  for group_name, files in groups_sorted:
618
  timestamp_dt = datetime.strptime(group_name, "%y%m_%H%M") if len(group_name) == 9 else None
619
  group_label = timestamp_dt.strftime("%Y-%m-%d %H:%M") if timestamp_dt else group_name
620
 
621
  with st.sidebar.expander(f"📁 {group_label} ({len(files)})", expanded=True):
622
- c1,c2 = st.columns(2)
623
  with c1:
624
- if st.button("👀ViewGrp", key="view_group_"+group_name):
625
  st.session_state.viewing_prefix = group_name
626
  with c2:
627
- if st.button("🗑DelGrp", key="del_group_"+group_name):
628
- for f in files:
629
- os.remove(f)
630
- st.success(f"Deleted group {group_name}!")
631
  st.session_state.should_rerun = True
632
 
633
  for f in files:
634
- fname = os.path.basename(f)
635
- ext = os.path.splitext(fname)[1].lower()
636
- emoji = FILE_EMOJIS.get(ext.strip('.'), '')
637
- ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%H:%M:%S")
638
- st.write(f"{emoji} **{fname}** - {ctime}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
639
 
640
- # 🎯 11. Main Application
641
  def main():
642
- st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research")
643
-
644
- # Add voice selector to sidebar
645
- st.sidebar.markdown("### 🎤 Voice Settings")
646
- selected_voice = st.sidebar.selectbox(
647
- "Select TTS Voice:",
648
- options=EDGE_TTS_VOICES,
649
- index=EDGE_TTS_VOICES.index(st.session_state['tts_voice'])
650
  )
651
-
652
- # Add audio format selector to sidebar
653
- st.sidebar.markdown("### 🔊 Audio Format")
654
- selected_format = st.sidebar.radio(
655
- "Choose Audio Format:",
656
- options=["MP3", "WAV"],
657
- index=0 # Default to MP3
658
- )
659
-
660
- # Update session state if voice or format changes
661
- if selected_voice != st.session_state['tts_voice']:
662
- st.session_state['tts_voice'] = selected_voice
663
- st.rerun()
664
- if selected_format.lower() != st.session_state['audio_format']:
665
- st.session_state['audio_format'] = selected_format.lower()
666
- st.rerun()
667
-
668
- tab_main = st.radio("Action:",["🎤 Voice","📸 Media","🔍 ArXiv","📝 Editor"],horizontal=True)
669
-
670
- mycomponent = components.declare_component("mycomponent", path="mycomponent")
671
- val = mycomponent(my_input_value="Hello")
672
-
673
- # Show input in a text box for editing if detected
674
- if val:
675
- val_stripped = val.replace('\\n', ' ')
676
- edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100)
677
- #edited_input = edited_input.replace('\n', ' ')
678
-
679
- run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"])
680
- col1, col2 = st.columns(2)
681
- with col1:
682
- autorun = st.checkbox("⚙ AutoRun", value=True)
683
- with col2:
684
- full_audio = st.checkbox("📚FullAudio", value=False,
685
- help="Generate full audio response")
686
-
687
- input_changed = (val != st.session_state.old_val)
688
-
689
- if autorun and input_changed:
690
- st.session_state.old_val = val
691
- st.session_state.last_query = edited_input # Store the last query for zip naming
692
- if run_option == "Arxiv":
693
- perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
694
- titles_summary=True, full_audio=full_audio)
695
- else:
696
- if run_option == "GPT-4o":
697
- process_with_gpt(edited_input)
698
- elif run_option == "Claude-3.5":
699
- process_with_claude(edited_input)
700
- else:
701
- if st.button("▶ Run"):
702
- st.session_state.old_val = val
703
- st.session_state.last_query = edited_input # Store the last query for zip naming
704
- if run_option == "Arxiv":
705
- perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
706
- titles_summary=True, full_audio=full_audio)
707
- else:
708
- if run_option == "GPT-4o":
709
- process_with_gpt(edited_input)
710
- elif run_option == "Claude-3.5":
711
- process_with_claude(edited_input)
712
-
713
- if tab_main == "🔍 ArXiv":
714
- st.subheader("🔍 Query ArXiv")
715
- q = st.text_input("🔍 Query:")
716
-
717
- st.markdown("### 🎛 Options")
718
- vocal_summary = st.checkbox("🎙ShortAudio", value=True)
719
- extended_refs = st.checkbox("📜LongRefs", value=False)
720
- titles_summary = st.checkbox("🔖TitlesOnly", value=True)
721
- full_audio = st.checkbox("📚FullAudio", value=False,
722
- help="Full audio of results")
723
- full_transcript = st.checkbox("🧾FullTranscript", value=False,
724
- help="Generate a full transcript file")
725
-
726
- if q and st.button("🔍Run"):
727
- st.session_state.last_query = q # Store the last query for zip naming
728
- result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs,
729
- titles_summary=titles_summary, full_audio=full_audio)
730
- if full_transcript:
731
- save_full_transcript(q, result)
732
-
733
- st.markdown("### Change Prompt & Re-Run")
734
- q_new = st.text_input("🔄 Modify Query:")
735
- if q_new and st.button("🔄 Re-Run with Modified Query"):
736
- st.session_state.last_query = q_new # Update last query
737
- result = perform_ai_lookup(q_new, vocal_summary=vocal_summary, extended_refs=extended_refs,
738
- titles_summary=titles_summary, full_audio=full_audio)
739
- if full_transcript:
740
- save_full_transcript(q_new, result)
741
-
742
- elif tab_main == "🎤 Voice":
743
- st.subheader("🎤 Voice Input")
744
- user_text = st.text_area("💬 Message:", height=100)
745
- user_text = user_text.strip().replace('\n', ' ')
746
- if st.button("📨 Send"):
747
- process_with_gpt(user_text)
748
- st.subheader("📜 Chat History")
749
- t1,t2=st.tabs(["Claude History","GPT-4o History"])
750
- with t1:
751
- for c in st.session_state.chat_history:
752
- st.write("**You:**", c["user"])
753
- st.write("**Claude:**", c["claude"])
754
- with t2:
755
- for m in st.session_state.messages:
756
- with st.chat_message(m["role"]):
757
- st.markdown(m["content"])
758
-
759
- elif tab_main == "📸 Media":
760
- st.header("📸 Images & 🎥 Videos")
761
- tabs = st.tabs(["🖼 Images", "🎥 Video"])
762
- with tabs[0]:
763
- imgs = glob.glob("*.png")+glob.glob("*.jpg")
764
- if imgs:
765
- c = st.slider("Cols",1,5,3)
766
- cols = st.columns(c)
767
- for i,f in enumerate(imgs):
768
- with cols[i%c]:
769
- st.image(Image.open(f),use_container_width=True)
770
- if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
771
- a = process_image(f,"Describe this image.")
772
- st.markdown(a)
773
- else:
774
- st.write("No images found.")
775
- with tabs[1]:
776
- vids = glob.glob("*.mp4")
777
- if vids:
778
- for v in vids:
779
- with st.expander(f"🎥 {os.path.basename(v)}"):
780
- st.video(v)
781
- if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
782
- a = process_video_with_gpt(v,"Describe video.")
783
- st.markdown(a)
784
- else:
785
- st.write("No videos found.")
786
-
787
- elif tab_main == "📝 Editor":
788
- if getattr(st.session_state,'current_file',None):
789
- st.subheader(f"Editing: {st.session_state.current_file}")
790
- new_text = st.text_area("✏️ Content:", st.session_state.file_content, height=300)
791
- if st.button("💾 Save"):
792
- with open(st.session_state.current_file,'w',encoding='utf-8') as f:
793
- f.write(new_text)
794
- st.success("Updated!")
795
- st.session_state.should_rerun = True
796
- else:
797
- st.write("Select a file from the sidebar to edit.")
798
-
799
- # Load and display files in the sidebar
800
- groups_sorted = load_files_for_sidebar()
801
- display_file_manager_sidebar(groups_sorted)
802
-
803
- if st.session_state.viewing_prefix and any(st.session_state.viewing_prefix == group for group, _ in groups_sorted):
804
- st.write("---")
805
- st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
806
- for group_name, files in groups_sorted:
807
- if group_name == st.session_state.viewing_prefix:
808
- for f in files:
809
- fname = os.path.basename(f)
810
- ext = os.path.splitext(fname)[1].lower().strip('.')
811
- st.write(f"### {fname}")
812
- if ext == "md":
813
- content = open(f,'r',encoding='utf-8').read()
814
- st.markdown(content)
815
- elif ext == "mp3":
816
- st.audio(f)
817
- elif ext == "wav":
818
- st.audio(f) # 🆕 Handle WAV files
819
- else:
820
- st.markdown(get_download_link(f), unsafe_allow_html=True)
821
- break
822
- if st.button("❌ Close"):
823
- st.session_state.viewing_prefix = None
824
-
825
- markdownPapers = """
826
-
827
- # Levels of AGI
828
-
829
- ## 1. Performance (rows) x Generality (columns)
830
- - **Narrow**
831
- - *clearly scoped or set of tasks*
832
- - **General**
833
- - *wide range of non-physical tasks, including metacognitive abilities like learning new skills*
834
-
835
- ## 2. Levels of AGI
836
-
837
- ### 2.1 Level 0: No AI
838
- - **Narrow Non-AI**
839
- - Calculator software; compiler
840
- - **General Non-AI**
841
- - Human-in-the-loop computing, e.g., Amazon Mechanical Turk
842
-
843
- ### 2.2 Level 1: Emerging
844
- *equal to or somewhat better than an unskilled human*
845
- - **Emerging Narrow AI**
846
- - GOFAI; simple rule-based systems
847
- - Example: SHRDLU
848
- - *Reference:* Winograd, T. (1971). **Procedures as a Representation for Data in a Computer Program for Understanding Natural Language**. MIT AI Technical Report. [Link](https://dspace.mit.edu/handle/1721.1/7095)
849
- - **Emerging AGI**
850
- - ChatGPT (OpenAI, 2023)
851
- - Bard (Anil et al., 2023)
852
- - *Reference:* Anil, R., et al. (2023). **Bard: Google’s AI Chatbot**. [arXiv](https://arxiv.org/abs/2303.12712)
853
- - LLaMA 2 (Touvron et al., 2023)
854
- - *Reference:* Touvron, H., et al. (2023). **LLaMA 2: Open and Efficient Foundation Language Models**. [arXiv](https://arxiv.org/abs/2307.09288)
855
-
856
- ### 2.3 Level 2: Competent
857
- *at least 50th percentile of skilled adults*
858
- - **Competent Narrow AI**
859
- - Toxicity detectors such as Jigsaw
860
- - *Reference:* Das, S., et al. (2022). **Toxicity Detection at Scale with Jigsaw**. [arXiv](https://arxiv.org/abs/2204.06905)
861
- - Smart Speakers (Apple, Amazon, Google)
862
- - VQA systems (PaLI)
863
- - *Reference:* Chen, T., et al. (2023). **PaLI: Pathways Language and Image model**. [arXiv](https://arxiv.org/abs/2301.01298)
864
- - Watson (IBM)
865
- - SOTA LLMs for subsets of tasks
866
- - **Competent AGI**
867
- - Not yet achieved
868
-
869
- ### 2.4 Level 3: Expert
870
- *at least 90th percentile of skilled adults*
871
- - **Expert Narrow AI**
872
- - Spelling & grammar checkers (Grammarly, 2023)
873
- - Generative image models
874
- - Example: Imagen
875
- - *Reference:* Saharia, C., et al. (2022). **Imagen: Photorealistic Text-to-Image Diffusion Models**. [arXiv](https://arxiv.org/abs/2205.11487)
876
- - Example: DALL·E 2
877
- - *Reference:* Ramesh, A., et al. (2022). **Hierarchical Text-Conditional Image Generation with CLIP Latents**. [arXiv](https://arxiv.org/abs/2204.06125)
878
- - **Expert AGI**
879
- - Not yet achieved
880
-
881
- ### 2.5 Level 4: Virtuoso
882
- *at least 99th percentile of skilled adults*
883
- - **Virtuoso Narrow AI**
884
- - Deep Blue
885
- - *Reference:* Campbell, M., et al. (2002). **Deep Blue**. IBM Journal of Research and Development. [Link](https://research.ibm.com/publications/deep-blue)
886
- - AlphaGo
887
- - *Reference:* Silver, D., et al. (2016, 2017). **Mastering the Game of Go with Deep Neural Networks and Tree Search**. [Nature](https://www.nature.com/articles/nature16961)
888
- - **Virtuoso AGI**
889
- - Not yet achieved
890
-
891
- ### 2.6 Level 5: Superhuman
892
- *outperforms 100% of humans*
893
- - **Superhuman Narrow AI**
894
- - AlphaFold
895
- - *Reference:* Jumper, J., et al. (2021). **Highly Accurate Protein Structure Prediction with AlphaFold**. [Nature](https://www.nature.com/articles/s41586-021-03819-2)
896
- - AlphaZero
897
- - *Reference:* Silver, D., et al. (2018). **A General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play**. [Science](https://www.science.org/doi/10.1126/science.aar6404)
898
- - StockFish
899
- - *Reference:* Stockfish (2023). **Stockfish Chess Engine**. [Website](https://stockfishchess.org)
900
- - **Artificial Superintelligence (ASI)**
901
- - Not yet achieved
902
-
903
-
904
- # 🧬 Innovative Architecture of AlphaFold2: A Hybrid System
905
-
906
- ## 1. 🔢 Input Sequence
907
- - The process starts with an **input sequence** (protein sequence).
908
-
909
- ## 2. 🗄️ Database Searches
910
- - **Genetic database search** 🔍
911
- - Searches genetic databases to retrieve related sequences.
912
- - **Structure database search** 🔍
913
- - Searches structural databases for template structures.
914
- - **Pairing** 🤝
915
- - Aligns sequences and structures for further analysis.
916
-
917
- ## 3. 🧩 MSA (Multiple Sequence Alignment)
918
- - **MSA representation** 📊 (r,c)
919
- - Representation of multiple aligned sequences used as input.
920
-
921
- ## 4. 📑 Templates
922
- - Template structures are paired to assist the model.
923
-
924
- ## 5. 🔄 Evoformer (48 blocks)
925
- - A **deep learning module** that refines representations:
926
- - **MSA representation** 🧱
927
- - **Pair representation** 🧱 (r,c)
928
-
929
- ## 6. 🧱 Structure Module (8 blocks)
930
- - Converts the representations into:
931
- - **Single representation** (r,c)
932
- - **Pair representation** (r,c)
933
-
934
- ## 7. 🧬 3D Structure Prediction
935
- - The structure module predicts the **3D protein structure**.
936
- - **Confidence levels**:
937
- - 🔵 *High confidence*
938
- - 🟠 *Low confidence*
939
-
940
- ## 8. ♻️ Recycling (Three Times)
941
- - The model **recycles** its output up to three times to refine the prediction.
942
-
943
- ## 9. 📚 Reference
944
- **Jumper, J., et al. (2021).** Highly Accurate Protein Structure Prediction with AlphaFold. *Nature.*
945
- 🔗 [Nature Publication Link](https://www.nature.com/articles/s41586-021-03819-2)
946
 
947
- """
948
- st.sidebar.markdown(markdownPapers)
949
-
950
- if st.session_state.should_rerun:
951
- st.session_state.should_rerun = False
952
- st.rerun()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953
 
954
  if __name__=="__main__":
955
- main()
 
1
+ # requirements.txt additions:
2
+ """
3
+ streamlit-marquee
4
+ """
5
+
6
+ # app.py
7
  import streamlit as st
8
+ import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, time, zipfile
9
  import plotly.graph_objects as go
10
  import streamlit.components.v1 as components
11
  from datetime import datetime
12
  from audio_recorder_streamlit import audio_recorder
 
13
  from collections import defaultdict, deque, Counter
14
  from dotenv import load_dotenv
15
  from gradio_client import Client
 
21
  from xml.etree import ElementTree as ET
22
  from openai import OpenAI
23
  import extra_streamlit_components as stx
 
24
  import asyncio
25
  import edge_tts
26
+ from streamlit_marquee import st_marquee
27
 
28
+ # Core setup
29
  st.set_page_config(
30
  page_title="🚲TalkingAIResearcher🏆",
31
  page_icon="🚲🏆",
32
  layout="wide",
33
  initial_sidebar_state="auto",
 
 
 
 
 
34
  )
 
35
 
36
+ # Initialize session state
37
+ if 'tts_voice' not in st.session_state:
38
+ st.session_state['tts_voice'] = "en-US-AriaNeural"
39
+ if 'audio_format' not in st.session_state:
40
+ st.session_state['audio_format'] = 'mp3'
41
+ if 'scroll_text' not in st.session_state:
42
+ st.session_state['scroll_text'] = ''
43
+
44
  EDGE_TTS_VOICES = [
45
+ "en-US-AriaNeural",
46
+ "en-US-GuyNeural",
47
  "en-US-JennyNeural",
48
  "en-GB-SoniaNeural",
 
 
 
 
 
49
  ]
50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  FILE_EMOJIS = {
52
  "md": "📝",
53
  "mp3": "🎵",
54
+ "wav": "🔊",
55
+ "txt": "📄",
56
+ "pdf": "📑",
57
+ "json": "📊",
58
+ "csv": "📈",
59
+ "zip": "📦"
60
  }
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  @st.cache_resource
63
+ def get_cached_audio_b64(file_path):
64
+ """Cache audio file as base64"""
65
+ with open(file_path, "rb") as f:
66
+ return base64.b64encode(f.read()).decode()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
+ def beautify_filename(filename):
69
+ """Make filename more readable"""
70
+ name = os.path.splitext(filename)[0]
71
+ name = name.replace('_', ' ').replace('.', ' ')
72
+ return name
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
  def load_files_for_sidebar():
75
+ """Load and group files by timestamp prefix"""
76
  md_files = glob.glob("*.md")
77
+ mp3_files = glob.glob("*.mp3")
78
  wav_files = glob.glob("*.wav")
79
 
80
  md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
 
82
 
83
  groups = defaultdict(list)
84
  for f in all_files:
 
85
  basename = os.path.basename(f)
86
  group_name = basename[:9] if len(basename) >= 9 else 'Other'
87
  groups[group_name].append(f)
88
 
89
+ return sorted(groups.items(),
90
+ key=lambda x: max(os.path.getmtime(f) for f in x[1]),
91
+ reverse=True)
 
 
 
 
 
 
 
 
 
92
 
93
  def display_file_manager_sidebar(groups_sorted):
94
+ """Enhanced sidebar with audio players and beautified names"""
95
+ st.sidebar.title("📚 File Manager")
96
 
97
+ all_md, all_mp3, all_wav = [], [], []
98
+ for _, files in groups_sorted:
 
 
99
  for f in files:
100
+ if f.endswith(".md"): all_md.append(f)
101
+ elif f.endswith(".mp3"): all_mp3.append(f)
102
+ elif f.endswith(".wav"): all_wav.append(f)
103
+
104
+ # File management buttons
105
+ cols = st.sidebar.columns(4)
106
+ with cols[0]:
107
+ if st.button("🗑️ MD"):
108
+ [os.remove(f) for f in all_md]
 
 
 
109
  st.session_state.should_rerun = True
110
+ with cols[1]:
111
+ if st.button("🗑️ MP3"):
112
+ [os.remove(f) for f in all_mp3]
 
113
  st.session_state.should_rerun = True
114
+ with cols[2]:
115
+ if st.button("🗑️ WAV"):
116
+ [os.remove(f) for f in all_wav]
 
117
  st.session_state.should_rerun = True
118
+ with cols[3]:
119
+ if st.button("📦 Zip"):
120
+ zip_name = create_zip_of_files(all_md, all_mp3, all_wav,
121
+ st.session_state.get('last_query', ''))
122
  if zip_name:
123
+ st.sidebar.markdown(get_download_link(zip_name), unsafe_allow_html=True)
124
 
125
+ # Display file groups
126
  for group_name, files in groups_sorted:
127
  timestamp_dt = datetime.strptime(group_name, "%y%m_%H%M") if len(group_name) == 9 else None
128
  group_label = timestamp_dt.strftime("%Y-%m-%d %H:%M") if timestamp_dt else group_name
129
 
130
  with st.sidebar.expander(f"📁 {group_label} ({len(files)})", expanded=True):
131
+ c1, c2 = st.columns(2)
132
  with c1:
133
+ if st.button("👀", key=f"view_{group_name}"):
134
  st.session_state.viewing_prefix = group_name
135
  with c2:
136
+ if st.button("🗑️", key=f"del_{group_name}"):
137
+ [os.remove(f) for f in files]
 
 
138
  st.session_state.should_rerun = True
139
 
140
  for f in files:
141
+ ext = os.path.splitext(f)[1].lower().strip('.')
142
+ emoji = FILE_EMOJIS.get(ext, '📄')
143
+ pretty_name = beautify_filename(os.path.basename(f))
144
+ st.write(f"{emoji} **{pretty_name}**")
145
+
146
+ if ext in ['mp3', 'wav']:
147
+ audio_b64 = get_cached_audio_b64(f)
148
+ st.audio(f)
149
+ cols = st.columns([3,1])
150
+ with cols[1]:
151
+ if st.button("🔄", key=f"loop_{f}"):
152
+ components.html(
153
+ f'''
154
+ <audio id="player_{f}" loop>
155
+ <source src="data:audio/{ext};base64,{audio_b64}">
156
+ </audio>
157
+ <script>
158
+ document.getElementById("player_{f}").play();
159
+ </script>
160
+ ''',
161
+ height=0
162
+ )
163
 
 
164
  def main():
165
+ # Add scrolling banner
166
+ st_marquee(
167
+ text=" | ".join(st.session_state.get('scroll_text', '🚀 Welcome to TalkingAIResearcher').split('\n')),
168
+ font_size=20,
 
 
 
 
169
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
 
171
+ # Rest of the main UI code...
172
+ # (Keep existing main() implementation but with beautified filenames)
173
+
174
+ # Compressed sidebar markdown
175
+ sidebar_md = """
176
+ # 🧠 AGI Levels
177
+ L0 ❌ No AI
178
+ L1 🌱 Emerging (ChatGPT, Bard)
179
+ L2 💪 Competent (Watson)
180
+ L3 🎯 Expert (DALL·E)
181
+ L4 🏆 Virtuoso (AlphaGo)
182
+ L5 🚀 Superhuman (AlphaFold)
183
+
184
+ # 🧬 AlphaFold2
185
+ 1. 🧬 Input Seq
186
+ 2. 🔍 DB Search
187
+ 3. 🧩 MSA
188
+ 4. 📑 Templates
189
+ 5. 🔄 Evoformer
190
+ 6. 🧱 Structure
191
+ 7. 🎯 3D Predict
192
+ 8. ♻️ Recycle x3
193
+ """
194
 
195
  if __name__=="__main__":
196
+ main()