Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,23 @@
|
|
1 |
import streamlit as st
|
2 |
-
import anthropic
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import os
|
6 |
-
import re
|
7 |
-
import asyncio
|
8 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
9 |
from gradio_client import Client
|
10 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
import edge_tts
|
12 |
|
13 |
# 🎯 1. Core Configuration & Setup
|
@@ -22,22 +32,12 @@ st.set_page_config(
|
|
22 |
'About': "🚲BikeAI🏆 Claude/GPT Research AI"
|
23 |
}
|
24 |
)
|
25 |
-
st.markdown("""
|
26 |
-
<style>
|
27 |
-
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
|
28 |
-
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
|
29 |
-
.stButton>button {
|
30 |
-
margin-right: 0.5rem;
|
31 |
-
}
|
32 |
-
</style>
|
33 |
-
""", unsafe_allow_html=True)
|
34 |
-
|
35 |
-
# 🔑 2. API Setup & Clients
|
36 |
-
from dotenv import load_dotenv
|
37 |
load_dotenv()
|
38 |
|
|
|
39 |
openai_api_key = os.getenv('OPENAI_API_KEY', "")
|
40 |
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
|
|
|
41 |
if 'OPENAI_API_KEY' in st.secrets:
|
42 |
openai_api_key = st.secrets['OPENAI_API_KEY']
|
43 |
if 'ANTHROPIC_API_KEY' in st.secrets:
|
@@ -45,7 +45,9 @@ if 'ANTHROPIC_API_KEY' in st.secrets:
|
|
45 |
|
46 |
openai.api_key = openai_api_key
|
47 |
claude_client = anthropic.Anthropic(api_key=anthropic_key)
|
48 |
-
openai_client = openai
|
|
|
|
|
49 |
|
50 |
# 📝 3. Session State Management
|
51 |
if 'transcript_history' not in st.session_state:
|
@@ -53,9 +55,17 @@ if 'transcript_history' not in st.session_state:
|
|
53 |
if 'chat_history' not in st.session_state:
|
54 |
st.session_state['chat_history'] = []
|
55 |
if 'openai_model' not in st.session_state:
|
56 |
-
st.session_state['openai_model'] = "gpt-
|
57 |
if 'messages' not in st.session_state:
|
58 |
st.session_state['messages'] = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
if 'viewing_prefix' not in st.session_state:
|
60 |
st.session_state['viewing_prefix'] = None
|
61 |
if 'should_rerun' not in st.session_state:
|
@@ -63,7 +73,23 @@ if 'should_rerun' not in st.session_state:
|
|
63 |
if 'old_val' not in st.session_state:
|
64 |
st.session_state['old_val'] = None
|
65 |
|
66 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
def get_high_info_terms(text: str) -> list:
|
68 |
"""Extract high-information terms from text, including key phrases."""
|
69 |
stop_words = set([
|
@@ -124,7 +150,7 @@ def clean_text_for_filename(text: str) -> str:
|
|
124 |
filtered = [w for w in words if len(w)>3 and w not in stop_short]
|
125 |
return '_'.join(filtered)[:200]
|
126 |
|
127 |
-
# 📁
|
128 |
def generate_filename(prompt, response, file_type="md"):
|
129 |
"""
|
130 |
Generate filename with meaningful terms and short dense clips from prompt & response.
|
@@ -150,7 +176,7 @@ def generate_filename(prompt, response, file_type="md"):
|
|
150 |
return filename
|
151 |
|
152 |
def create_file(prompt, response, file_type="md"):
|
153 |
-
"""Create file with
|
154 |
filename = generate_filename(prompt.strip(), response.strip(), file_type)
|
155 |
with open(filename, 'w', encoding='utf-8') as f:
|
156 |
f.write(prompt + "\n\n" + response)
|
@@ -162,7 +188,7 @@ def get_download_link(file):
|
|
162 |
b64 = base64.b64encode(f.read()).decode()
|
163 |
return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>'
|
164 |
|
165 |
-
# 🔊
|
166 |
def clean_for_speech(text: str) -> str:
|
167 |
"""Clean text for speech synthesis"""
|
168 |
text = text.replace("\n", " ")
|
@@ -172,64 +198,53 @@ def clean_for_speech(text: str) -> str:
|
|
172 |
text = re.sub(r"\s+", " ", text).strip()
|
173 |
return text
|
174 |
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
text = clean_for_speech(text)
|
178 |
if not text.strip():
|
179 |
return None
|
180 |
rate_str = f"{rate:+d}%"
|
181 |
pitch_str = f"{pitch:+d}Hz"
|
182 |
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
|
|
|
183 |
await communicate.save(out_fn)
|
184 |
return out_fn
|
185 |
|
186 |
-
def speak_with_edge_tts(text, voice
|
187 |
-
"""Wrapper for
|
188 |
-
|
|
|
|
|
|
|
|
|
189 |
|
190 |
def play_and_download_audio(file_path):
|
191 |
-
"""Play and provide
|
192 |
if file_path and os.path.exists(file_path):
|
193 |
st.audio(file_path)
|
194 |
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
|
195 |
st.markdown(dl_link, unsafe_allow_html=True)
|
196 |
|
197 |
-
|
198 |
-
"""Embeds an <audio> tag with autoplay + controls + a download link."""
|
199 |
-
if not file_path or not os.path.exists(file_path):
|
200 |
-
return
|
201 |
-
with open(file_path, "rb") as f:
|
202 |
-
b64_data = base64.b64encode(f.read()).decode("utf-8")
|
203 |
-
filename = os.path.basename(file_path)
|
204 |
-
st.markdown(f"""
|
205 |
-
<audio controls autoplay>
|
206 |
-
<source src="data:audio/mpeg;base64,{b64_data}" type="audio/mpeg">
|
207 |
-
Your browser does not support the audio element.
|
208 |
-
</audio>
|
209 |
-
<br/>
|
210 |
-
<a href="data:audio/mpeg;base64,{b64_data}" download="{filename}">
|
211 |
-
Download {filename}
|
212 |
-
</a>
|
213 |
-
""", unsafe_allow_html=True)
|
214 |
-
|
215 |
-
def generate_audio_filename(query, title, summary):
|
216 |
-
"""
|
217 |
-
Generate a specialized MP3 filename using query + title + summary.
|
218 |
-
Example: "2310_1205_query_title_summary.mp3"
|
219 |
-
"""
|
220 |
-
combined = (query + " " + title + " " + summary).strip().lower()
|
221 |
-
combined = re.sub(r'[^\w\s-]', '', combined) # Remove special characters
|
222 |
-
combined = "_".join(combined.split())[:80] # Limit length
|
223 |
-
prefix = datetime.now().strftime("%y%m_%H%M")
|
224 |
-
return f"{prefix}_{combined}.mp3"
|
225 |
-
|
226 |
-
# 🎬 7. Media Processing
|
227 |
def process_image(image_path, user_prompt):
|
228 |
"""Process image with GPT-4V"""
|
229 |
with open(image_path, "rb") as imgf:
|
230 |
image_data = imgf.read()
|
231 |
b64img = base64.b64encode(image_data).decode("utf-8")
|
232 |
-
resp = openai_client.
|
233 |
model=st.session_state["openai_model"],
|
234 |
messages=[
|
235 |
{"role": "system", "content": "You are a helpful assistant."},
|
@@ -242,25 +257,24 @@ def process_image(image_path, user_prompt):
|
|
242 |
)
|
243 |
return resp.choices[0].message.content
|
244 |
|
245 |
-
def
|
246 |
"""Process audio with Whisper"""
|
247 |
with open(audio_path, "rb") as f:
|
248 |
-
transcription = openai_client.
|
249 |
st.session_state.messages.append({"role": "user", "content": transcription.text})
|
250 |
return transcription.text
|
251 |
|
252 |
def process_video(video_path, seconds_per_frame=1):
|
253 |
"""Extract frames from video"""
|
254 |
-
import cv2
|
255 |
vid = cv2.VideoCapture(video_path)
|
256 |
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
|
257 |
fps = vid.get(cv2.CAP_PROP_FPS)
|
258 |
-
skip = int(fps
|
259 |
frames_b64 = []
|
260 |
for i in range(0, total, skip):
|
261 |
vid.set(cv2.CAP_PROP_POS_FRAMES, i)
|
262 |
ret, frame = vid.read()
|
263 |
-
if not ret:
|
264 |
break
|
265 |
_, buf = cv2.imencode(".jpg", frame)
|
266 |
frames_b64.append(base64.b64encode(buf).decode("utf-8"))
|
@@ -270,61 +284,196 @@ def process_video(video_path, seconds_per_frame=1):
|
|
270 |
def process_video_with_gpt(video_path, prompt):
|
271 |
"""Analyze video frames with GPT-4V"""
|
272 |
frames = process_video(video_path)
|
273 |
-
resp = openai_client.
|
274 |
model=st.session_state["openai_model"],
|
275 |
messages=[
|
276 |
-
{"role":
|
277 |
-
{"role":
|
278 |
-
{"type":
|
279 |
*[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
|
280 |
]}
|
281 |
]
|
282 |
)
|
283 |
return resp.choices[0].message.content
|
284 |
|
285 |
-
# 🤖
|
|
|
286 |
def save_full_transcript(query, text):
|
287 |
"""Save full transcript of Arxiv results as a file."""
|
288 |
create_file(query, text, "md")
|
289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
def process_with_gpt(text):
|
291 |
"""Process text with GPT-4"""
|
292 |
-
if not text:
|
293 |
return
|
294 |
st.session_state.messages.append({"role":"user","content":text})
|
295 |
with st.chat_message("user"):
|
296 |
st.markdown(text)
|
297 |
with st.chat_message("assistant"):
|
298 |
-
c = openai_client.
|
299 |
model=st.session_state["openai_model"],
|
300 |
messages=st.session_state.messages,
|
301 |
stream=False
|
302 |
)
|
303 |
ans = c.choices[0].message.content
|
304 |
-
st.write("GPT-
|
305 |
create_file(text, ans, "md")
|
306 |
st.session_state.messages.append({"role":"assistant","content":ans})
|
307 |
return ans
|
308 |
|
309 |
def process_with_claude(text):
|
310 |
"""Process text with Claude"""
|
311 |
-
if not text:
|
312 |
return
|
313 |
with st.chat_message("user"):
|
314 |
st.markdown(text)
|
315 |
with st.chat_message("assistant"):
|
316 |
-
r = claude_client.
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
)
|
321 |
-
ans = r[
|
322 |
st.write("Claude-3.5: " + ans)
|
323 |
create_file(text, ans, "md")
|
324 |
st.session_state.chat_history.append({"user":text,"claude":ans})
|
325 |
return ans
|
326 |
|
327 |
-
# 📂
|
328 |
def create_zip_of_files(md_files, mp3_files):
|
329 |
"""Create zip with intelligent naming"""
|
330 |
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
|
@@ -358,21 +507,22 @@ def load_files_for_sidebar():
|
|
358 |
"""Load and group files for sidebar display"""
|
359 |
md_files = glob.glob("*.md")
|
360 |
mp3_files = glob.glob("*.mp3")
|
361 |
-
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
|
362 |
|
|
|
363 |
all_files = md_files + mp3_files
|
|
|
364 |
groups = defaultdict(list)
|
365 |
for f in all_files:
|
366 |
fname = os.path.basename(f)
|
367 |
-
prefix = fname[:10]
|
368 |
groups[prefix].append(f)
|
369 |
|
370 |
for prefix in groups:
|
371 |
groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True)
|
372 |
|
373 |
sorted_prefixes = sorted(groups.keys(),
|
374 |
-
|
375 |
-
|
376 |
return groups, sorted_prefixes
|
377 |
|
378 |
def extract_keywords_from_md(files):
|
@@ -412,7 +562,7 @@ def display_file_manager_sidebar(groups, sorted_prefixes):
|
|
412 |
if st.button("⬇️ ZipAll"):
|
413 |
z = create_zip_of_files(all_md, all_mp3)
|
414 |
if z:
|
415 |
-
st.sidebar.markdown(get_download_link(z),
|
416 |
|
417 |
for prefix in sorted_prefixes:
|
418 |
files = groups[prefix]
|
@@ -435,32 +585,106 @@ def display_file_manager_sidebar(groups, sorted_prefixes):
|
|
435 |
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
|
436 |
st.write(f"**{fname}** - {ctime}")
|
437 |
|
438 |
-
# 🎯
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
def main():
|
440 |
st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research")
|
441 |
-
tab_main = st.radio("Action:",
|
442 |
|
443 |
-
|
444 |
-
|
445 |
-
# val = mycomponent(my_input_value="Hello")
|
446 |
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
|
452 |
if tab_main == "🔍 ArXiv":
|
453 |
st.subheader("🔍 Query ArXiv")
|
454 |
q = st.text_input("🔍 Query:")
|
455 |
|
456 |
st.markdown("### 🎛 Options")
|
457 |
-
|
458 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
|
460 |
-
|
461 |
-
|
|
|
|
|
|
|
462 |
if full_transcript:
|
463 |
-
|
464 |
|
465 |
elif tab_main == "🎤 Voice":
|
466 |
st.subheader("🎤 Voice Input")
|
@@ -469,7 +693,7 @@ def main():
|
|
469 |
if st.button("📨 Send"):
|
470 |
process_with_gpt(user_text)
|
471 |
st.subheader("📜 Chat History")
|
472 |
-
t1,
|
473 |
with t1:
|
474 |
for c in st.session_state.chat_history:
|
475 |
st.write("**You:**", c["user"])
|
@@ -483,51 +707,45 @@ def main():
|
|
483 |
st.header("📸 Images & 🎥 Videos")
|
484 |
tabs = st.tabs(["🖼 Images", "🎥 Video"])
|
485 |
with tabs[0]:
|
486 |
-
imgs = glob.glob("*.png")
|
487 |
if imgs:
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
|
|
492 |
if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
|
493 |
-
a = process_image(f,
|
494 |
st.markdown(a)
|
495 |
else:
|
496 |
st.write("No images found.")
|
497 |
with tabs[1]:
|
498 |
-
vids = glob.glob("*.mp4")
|
499 |
if vids:
|
500 |
for v in vids:
|
501 |
with st.expander(f"🎥 {os.path.basename(v)}"):
|
502 |
st.video(v)
|
503 |
if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
|
504 |
-
a = process_video_with_gpt(v,
|
505 |
st.markdown(a)
|
506 |
else:
|
507 |
st.write("No videos found.")
|
508 |
|
509 |
elif tab_main == "📝 Editor":
|
510 |
-
st.
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
if submitted:
|
519 |
-
with open(selected_file, 'w', encoding='utf-8') as f:
|
520 |
-
f.write(new_content)
|
521 |
-
st.success(f"Updated {selected_file}!")
|
522 |
-
st.session_state.should_rerun = True
|
523 |
else:
|
524 |
-
st.write("
|
525 |
|
526 |
-
# File manager in sidebar
|
527 |
groups, sorted_prefixes = load_files_for_sidebar()
|
528 |
display_file_manager_sidebar(groups, sorted_prefixes)
|
529 |
|
530 |
-
# If user clicked "view group"
|
531 |
if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
|
532 |
st.write("---")
|
533 |
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
|
@@ -536,7 +754,7 @@ def main():
|
|
536 |
ext = os.path.splitext(fname)[1].lower().strip('.')
|
537 |
st.write(f"### {fname}")
|
538 |
if ext == "md":
|
539 |
-
content = open(f,
|
540 |
st.markdown(content)
|
541 |
elif ext == "mp3":
|
542 |
st.audio(f)
|
@@ -547,120 +765,7 @@ def main():
|
|
547 |
|
548 |
if st.session_state.should_rerun:
|
549 |
st.session_state.should_rerun = False
|
550 |
-
st.
|
551 |
-
|
552 |
-
def parse_arxiv_papers(ref_text: str):
|
553 |
-
"""
|
554 |
-
Splits the references into paper-level chunks.
|
555 |
-
Each paper starts with a number followed by a parenthesis, e.g., "1) [Title (Year)] Summary..."
|
556 |
-
Returns a list of dictionaries with 'title', 'summary', and 'year'.
|
557 |
-
Limits to 20 papers.
|
558 |
-
"""
|
559 |
-
# Split based on patterns like "1) ", "2) ", etc.
|
560 |
-
chunks = re.split(r'\n?\d+\)\s+', ref_text)
|
561 |
-
# Remove any empty strings resulting from split
|
562 |
-
chunks = [chunk.strip() for chunk in chunks if chunk.strip()]
|
563 |
-
papers = []
|
564 |
-
for chunk in chunks[:20]:
|
565 |
-
# Extract title within brackets if present
|
566 |
-
title_match = re.search(r'\[([^\]]+)\]', chunk)
|
567 |
-
title = title_match.group(1).strip() if title_match else "No Title"
|
568 |
-
|
569 |
-
# Extract year (assuming it's a 4-digit number within the title or summary)
|
570 |
-
year_match = re.search(r'\b(20\d{2})\b', chunk)
|
571 |
-
year = int(year_match.group(1)) if year_match else None
|
572 |
-
|
573 |
-
# The entire chunk is considered the summary
|
574 |
-
summary = chunk
|
575 |
-
|
576 |
-
papers.append({
|
577 |
-
'title': title,
|
578 |
-
'summary': summary,
|
579 |
-
'year': year
|
580 |
-
})
|
581 |
-
return papers
|
582 |
-
|
583 |
-
def perform_ai_lookup(q):
|
584 |
-
"""
|
585 |
-
Performs the Arxiv search and handles the processing of results.
|
586 |
-
Generates audio files for each paper (if year is 2023 or 2024).
|
587 |
-
"""
|
588 |
-
st.write(f"## Query: {q}")
|
589 |
-
|
590 |
-
# 1) Query the HF RAG pipeline
|
591 |
-
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
592 |
-
refs = client.predict(q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0]
|
593 |
-
r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm")
|
594 |
-
|
595 |
-
# 2) Combine for final text output
|
596 |
-
result = f"### 🔎 {q}\n\n{r2}\n\n{refs}"
|
597 |
-
st.markdown(result)
|
598 |
-
|
599 |
-
# 3) Parse references into papers
|
600 |
-
papers = parse_arxiv_papers(refs)
|
601 |
-
|
602 |
-
# 4) Display each paper and generate audio if applicable
|
603 |
-
st.write("## Individual Papers (Up to 20)")
|
604 |
-
for idx, paper in enumerate(papers):
|
605 |
-
year_str = paper["year"] if paper["year"] else "Unknown Year"
|
606 |
-
st.markdown(f"**Paper #{idx+1}: {paper['title']}** \n*Year:* {year_str}")
|
607 |
-
st.markdown(f"*Summary:* {paper['summary']}")
|
608 |
-
st.write("---")
|
609 |
-
|
610 |
-
# Generate TTS if year is 2023 or 2024
|
611 |
-
if paper["year"] in [2023, 2024]:
|
612 |
-
# Combine title and summary for TTS
|
613 |
-
tts_text = f"Title: {paper['title']}. Summary: {paper['summary']}"
|
614 |
-
# Generate a specialized filename
|
615 |
-
mp3_filename = generate_audio_filename(q, paper['title'], paper['summary'])
|
616 |
-
# Generate audio using Edge TTS
|
617 |
-
temp_mp3 = speak_with_edge_tts(tts_text, out_fn=mp3_filename)
|
618 |
-
if temp_mp3 and os.path.exists(mp3_filename):
|
619 |
-
# Embed the audio player with auto-play and download link
|
620 |
-
auto_play_audio(mp3_filename)
|
621 |
-
|
622 |
-
# Optionally save the full transcript
|
623 |
-
st.write("### Transcript")
|
624 |
-
st.markdown(result)
|
625 |
-
create_file(q, result, "md")
|
626 |
-
|
627 |
-
def process_with_gpt(text):
|
628 |
-
"""Process text with GPT-4"""
|
629 |
-
if not text:
|
630 |
-
return
|
631 |
-
st.session_state.messages.append({"role":"user","content":text})
|
632 |
-
with st.chat_message("user"):
|
633 |
-
st.markdown(text)
|
634 |
-
with st.chat_message("assistant"):
|
635 |
-
c = openai_client.ChatCompletion.create(
|
636 |
-
model=st.session_state["openai_model"],
|
637 |
-
messages=st.session_state.messages,
|
638 |
-
stream=False
|
639 |
-
)
|
640 |
-
ans = c.choices[0].message.content
|
641 |
-
st.write("GPT-4: " + ans)
|
642 |
-
create_file(text, ans, "md")
|
643 |
-
st.session_state.messages.append({"role":"assistant","content":ans})
|
644 |
-
return ans
|
645 |
-
|
646 |
-
def process_with_claude(text):
|
647 |
-
"""Process text with Claude"""
|
648 |
-
if not text:
|
649 |
-
return
|
650 |
-
with st.chat_message("user"):
|
651 |
-
st.markdown(text)
|
652 |
-
with st.chat_message("assistant"):
|
653 |
-
r = claude_client.completions.create(
|
654 |
-
prompt=text,
|
655 |
-
model="claude-3",
|
656 |
-
max_tokens=1000
|
657 |
-
)
|
658 |
-
ans = r['completion']
|
659 |
-
st.write("Claude-3.5: " + ans)
|
660 |
-
create_file(text, ans, "md")
|
661 |
-
st.session_state.chat_history.append({"user":text,"claude":ans})
|
662 |
-
return ans
|
663 |
|
664 |
-
|
665 |
-
if __name__ == "__main__":
|
666 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
import streamlit.components.v1 as components
|
|
|
|
|
|
|
5 |
from datetime import datetime
|
6 |
+
from audio_recorder_streamlit import audio_recorder
|
7 |
+
from bs4 import BeautifulSoup
|
8 |
+
from collections import defaultdict, deque
|
9 |
+
from dotenv import load_dotenv
|
10 |
from gradio_client import Client
|
11 |
+
from huggingface_hub import InferenceClient
|
12 |
+
from io import BytesIO
|
13 |
+
from PIL import Image
|
14 |
+
from PyPDF2 import PdfReader
|
15 |
+
from urllib.parse import quote
|
16 |
+
from xml.etree import ElementTree as ET
|
17 |
+
from openai import OpenAI
|
18 |
+
import extra_streamlit_components as stx
|
19 |
+
from streamlit.runtime.scriptrunner import get_script_run_ctx
|
20 |
+
import asyncio
|
21 |
import edge_tts
|
22 |
|
23 |
# 🎯 1. Core Configuration & Setup
|
|
|
32 |
'About': "🚲BikeAI🏆 Claude/GPT Research AI"
|
33 |
}
|
34 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
load_dotenv()
|
36 |
|
37 |
+
# 🔑 2. API Setup & Clients
|
38 |
openai_api_key = os.getenv('OPENAI_API_KEY', "")
|
39 |
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
|
40 |
+
xai_key = os.getenv('xai',"")
|
41 |
if 'OPENAI_API_KEY' in st.secrets:
|
42 |
openai_api_key = st.secrets['OPENAI_API_KEY']
|
43 |
if 'ANTHROPIC_API_KEY' in st.secrets:
|
|
|
45 |
|
46 |
openai.api_key = openai_api_key
|
47 |
claude_client = anthropic.Anthropic(api_key=anthropic_key)
|
48 |
+
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
|
49 |
+
HF_KEY = os.getenv('HF_KEY')
|
50 |
+
API_URL = os.getenv('API_URL')
|
51 |
|
52 |
# 📝 3. Session State Management
|
53 |
if 'transcript_history' not in st.session_state:
|
|
|
55 |
if 'chat_history' not in st.session_state:
|
56 |
st.session_state['chat_history'] = []
|
57 |
if 'openai_model' not in st.session_state:
|
58 |
+
st.session_state['openai_model'] = "gpt-4o-2024-05-13"
|
59 |
if 'messages' not in st.session_state:
|
60 |
st.session_state['messages'] = []
|
61 |
+
if 'last_voice_input' not in st.session_state:
|
62 |
+
st.session_state['last_voice_input'] = ""
|
63 |
+
if 'editing_file' not in st.session_state:
|
64 |
+
st.session_state['editing_file'] = None
|
65 |
+
if 'edit_new_name' not in st.session_state:
|
66 |
+
st.session_state['edit_new_name'] = ""
|
67 |
+
if 'edit_new_content' not in st.session_state:
|
68 |
+
st.session_state['edit_new_content'] = ""
|
69 |
if 'viewing_prefix' not in st.session_state:
|
70 |
st.session_state['viewing_prefix'] = None
|
71 |
if 'should_rerun' not in st.session_state:
|
|
|
73 |
if 'old_val' not in st.session_state:
|
74 |
st.session_state['old_val'] = None
|
75 |
|
76 |
+
# 🎨 4. Custom CSS
|
77 |
+
st.markdown("""
|
78 |
+
<style>
|
79 |
+
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
|
80 |
+
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
|
81 |
+
.stButton>button {
|
82 |
+
margin-right: 0.5rem;
|
83 |
+
}
|
84 |
+
</style>
|
85 |
+
""", unsafe_allow_html=True)
|
86 |
+
|
87 |
+
FILE_EMOJIS = {
|
88 |
+
"md": "📝",
|
89 |
+
"mp3": "🎵",
|
90 |
+
}
|
91 |
+
|
92 |
+
# 🧠 5. High-Information Content Extraction
|
93 |
def get_high_info_terms(text: str) -> list:
|
94 |
"""Extract high-information terms from text, including key phrases."""
|
95 |
stop_words = set([
|
|
|
150 |
filtered = [w for w in words if len(w)>3 and w not in stop_short]
|
151 |
return '_'.join(filtered)[:200]
|
152 |
|
153 |
+
# 📁 6. File Operations
|
154 |
def generate_filename(prompt, response, file_type="md"):
|
155 |
"""
|
156 |
Generate filename with meaningful terms and short dense clips from prompt & response.
|
|
|
176 |
return filename
|
177 |
|
178 |
def create_file(prompt, response, file_type="md"):
|
179 |
+
"""Create file with intelligent naming"""
|
180 |
filename = generate_filename(prompt.strip(), response.strip(), file_type)
|
181 |
with open(filename, 'w', encoding='utf-8') as f:
|
182 |
f.write(prompt + "\n\n" + response)
|
|
|
188 |
b64 = base64.b64encode(f.read()).decode()
|
189 |
return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>'
|
190 |
|
191 |
+
# 🔊 7. Audio Processing
|
192 |
def clean_for_speech(text: str) -> str:
|
193 |
"""Clean text for speech synthesis"""
|
194 |
text = text.replace("\n", " ")
|
|
|
198 |
text = re.sub(r"\s+", " ", text).strip()
|
199 |
return text
|
200 |
|
201 |
+
@st.cache_resource
|
202 |
+
def speech_synthesis_html(result):
|
203 |
+
"""Create HTML for speech synthesis"""
|
204 |
+
html_code = f"""
|
205 |
+
<html><body>
|
206 |
+
<script>
|
207 |
+
var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
|
208 |
+
window.speechSynthesis.speak(msg);
|
209 |
+
</script>
|
210 |
+
</body></html>
|
211 |
+
"""
|
212 |
+
components.html(html_code, height=0)
|
213 |
+
|
214 |
+
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
|
215 |
+
"""Generate audio using Edge TTS"""
|
216 |
text = clean_for_speech(text)
|
217 |
if not text.strip():
|
218 |
return None
|
219 |
rate_str = f"{rate:+d}%"
|
220 |
pitch_str = f"{pitch:+d}Hz"
|
221 |
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
|
222 |
+
out_fn = generate_filename(text, text, "mp3")
|
223 |
await communicate.save(out_fn)
|
224 |
return out_fn
|
225 |
|
226 |
+
def speak_with_edge_tts(text, voice, rate=0, pitch=0):
|
227 |
+
"""Wrapper for edge TTS generation"""
|
228 |
+
try:
|
229 |
+
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
|
230 |
+
except Exception as e:
|
231 |
+
st.error(f"Error generating audio: {e}")
|
232 |
+
return None
|
233 |
|
234 |
def play_and_download_audio(file_path):
|
235 |
+
"""Play and provide download link for audio"""
|
236 |
if file_path and os.path.exists(file_path):
|
237 |
st.audio(file_path)
|
238 |
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
|
239 |
st.markdown(dl_link, unsafe_allow_html=True)
|
240 |
|
241 |
+
# 🎬 8. Media Processing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
def process_image(image_path, user_prompt):
|
243 |
"""Process image with GPT-4V"""
|
244 |
with open(image_path, "rb") as imgf:
|
245 |
image_data = imgf.read()
|
246 |
b64img = base64.b64encode(image_data).decode("utf-8")
|
247 |
+
resp = openai_client.chat.completions.create(
|
248 |
model=st.session_state["openai_model"],
|
249 |
messages=[
|
250 |
{"role": "system", "content": "You are a helpful assistant."},
|
|
|
257 |
)
|
258 |
return resp.choices[0].message.content
|
259 |
|
260 |
+
def process_audio(audio_path):
|
261 |
"""Process audio with Whisper"""
|
262 |
with open(audio_path, "rb") as f:
|
263 |
+
transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f)
|
264 |
st.session_state.messages.append({"role": "user", "content": transcription.text})
|
265 |
return transcription.text
|
266 |
|
267 |
def process_video(video_path, seconds_per_frame=1):
|
268 |
"""Extract frames from video"""
|
|
|
269 |
vid = cv2.VideoCapture(video_path)
|
270 |
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
|
271 |
fps = vid.get(cv2.CAP_PROP_FPS)
|
272 |
+
skip = int(fps*seconds_per_frame)
|
273 |
frames_b64 = []
|
274 |
for i in range(0, total, skip):
|
275 |
vid.set(cv2.CAP_PROP_POS_FRAMES, i)
|
276 |
ret, frame = vid.read()
|
277 |
+
if not ret:
|
278 |
break
|
279 |
_, buf = cv2.imencode(".jpg", frame)
|
280 |
frames_b64.append(base64.b64encode(buf).decode("utf-8"))
|
|
|
284 |
def process_video_with_gpt(video_path, prompt):
|
285 |
"""Analyze video frames with GPT-4V"""
|
286 |
frames = process_video(video_path)
|
287 |
+
resp = openai_client.chat.completions.create(
|
288 |
model=st.session_state["openai_model"],
|
289 |
messages=[
|
290 |
+
{"role":"system","content":"Analyze video frames."},
|
291 |
+
{"role":"user","content":[
|
292 |
+
{"type":"text","text":prompt},
|
293 |
*[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
|
294 |
]}
|
295 |
]
|
296 |
)
|
297 |
return resp.choices[0].message.content
|
298 |
|
299 |
+
# 🤖 9. AI Model Integration
|
300 |
+
|
301 |
def save_full_transcript(query, text):
|
302 |
"""Save full transcript of Arxiv results as a file."""
|
303 |
create_file(query, text, "md")
|
304 |
|
305 |
+
def parse_arxiv_refs(ref_text: str):
|
306 |
+
"""
|
307 |
+
Parse the multi-line references returned by the RAG pipeline.
|
308 |
+
Typical format lines like:
|
309 |
+
1) [Paper Title 2023] This is the summary ...
|
310 |
+
2) [Another Title (2024)] Another summary text ...
|
311 |
+
We'll attempt to find a year with a small regex or fallback.
|
312 |
+
Return list of dicts: { 'title': str, 'summary': str, 'year': int or None }
|
313 |
+
"""
|
314 |
+
lines = ref_text.split('\n')
|
315 |
+
results = []
|
316 |
+
for line in lines:
|
317 |
+
line = line.strip()
|
318 |
+
if not line:
|
319 |
+
continue
|
320 |
+
# Attempt to find [Title ...]
|
321 |
+
title_match = re.search(r"\[([^\]]+)\]", line)
|
322 |
+
if title_match:
|
323 |
+
raw_title = title_match.group(1).strip()
|
324 |
+
else:
|
325 |
+
# If no bracket found, skip or treat entire line as summary
|
326 |
+
raw_title = "No Title"
|
327 |
+
|
328 |
+
# Attempt to find trailing summary after bracket
|
329 |
+
# Example line: " [Paper Title 2024] Paper summary blah blah"
|
330 |
+
# So remove the bracketed portion from the line
|
331 |
+
remainder = line.replace(title_match.group(0), "").strip() if title_match else line
|
332 |
+
summary = remainder
|
333 |
+
|
334 |
+
# Attempt to guess year from the raw title
|
335 |
+
# We look for 4-digit patterns in raw_title or summary
|
336 |
+
year_match = re.search(r'(20\d{2})', raw_title)
|
337 |
+
if not year_match:
|
338 |
+
# fallback: try summary
|
339 |
+
year_match = re.search(r'(20\d{2})', summary)
|
340 |
+
if year_match:
|
341 |
+
year = int(year_match.group(1))
|
342 |
+
else:
|
343 |
+
year = None
|
344 |
+
|
345 |
+
results.append({
|
346 |
+
'title': raw_title,
|
347 |
+
'summary': summary,
|
348 |
+
'year': year
|
349 |
+
})
|
350 |
+
return results
|
351 |
+
|
352 |
+
|
353 |
+
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
|
354 |
+
titles_summary=True, full_audio=False, selected_voice="en-US-AriaNeural"):
|
355 |
+
"""Perform Arxiv search and generate audio summaries."""
|
356 |
+
start = time.time()
|
357 |
+
|
358 |
+
# 🎯 1) Query the HF RAG pipeline
|
359 |
+
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
360 |
+
refs = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")[0]
|
361 |
+
r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm")
|
362 |
+
|
363 |
+
# 🎯 2) Combine for final text output
|
364 |
+
result = f"### 🔎 {q}\n\n{r2}\n\n{refs}"
|
365 |
+
st.markdown(result)
|
366 |
+
|
367 |
+
# 🎯 3) Generate "all at once" audio if requested
|
368 |
+
if full_audio:
|
369 |
+
complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}"
|
370 |
+
audio_file_full = speak_with_edge_tts(complete_text, selected_voice)
|
371 |
+
st.write("### 📚 Full Audio")
|
372 |
+
play_and_download_audio(audio_file_full)
|
373 |
+
|
374 |
+
if vocal_summary:
|
375 |
+
main_text = clean_for_speech(r2)
|
376 |
+
audio_file_main = speak_with_edge_tts(main_text, selected_voice)
|
377 |
+
st.write("### 🎙 Short Audio")
|
378 |
+
play_and_download_audio(audio_file_main)
|
379 |
+
|
380 |
+
if extended_refs:
|
381 |
+
summaries_text = "Extended references: " + refs.replace('"','')
|
382 |
+
summaries_text = clean_for_speech(summaries_text)
|
383 |
+
audio_file_refs = speak_with_edge_tts(summaries_text, selected_voice)
|
384 |
+
st.write("### 📜 Long Refs")
|
385 |
+
play_and_download_audio(audio_file_refs)
|
386 |
+
|
387 |
+
# --------------------------------------
|
388 |
+
# NEW: Parse references, show sorted list
|
389 |
+
# --------------------------------------
|
390 |
+
parsed_refs = parse_arxiv_refs(refs)
|
391 |
+
|
392 |
+
# Sort by year descending (put None at bottom)
|
393 |
+
parsed_refs.sort(key=lambda x: x["year"] if x["year"] else 0, reverse=True)
|
394 |
+
|
395 |
+
st.write("## Individual Papers (Most Recent First)")
|
396 |
+
for idx, paper in enumerate(parsed_refs):
|
397 |
+
year_str = paper["year"] if paper["year"] else "Unknown Year"
|
398 |
+
st.markdown(f"**{idx+1}. {paper['title']}** \n*Year:* {year_str}")
|
399 |
+
st.markdown(f"*Summary:* {paper['summary']}")
|
400 |
+
|
401 |
+
# Two new TTS buttons: Title only or Title+Summary
|
402 |
+
colA, colB = st.columns(2)
|
403 |
+
with colA:
|
404 |
+
if st.button(f"🔊 Title", key=f"title_{idx}"):
|
405 |
+
text_tts = clean_for_speech(paper['title'])
|
406 |
+
audio_file_title = speak_with_edge_tts(text_tts, selected_voice)
|
407 |
+
play_and_download_audio(audio_file_title)
|
408 |
+
|
409 |
+
with colB:
|
410 |
+
if st.button(f"🔊 Title+Summary", key=f"summary_{idx}"):
|
411 |
+
text_tts = clean_for_speech(paper['title'] + ". " + paper['summary'])
|
412 |
+
audio_file_title_summary = speak_with_edge_tts(text_tts, selected_voice)
|
413 |
+
play_and_download_audio(audio_file_title_summary)
|
414 |
+
|
415 |
+
st.write("---")
|
416 |
+
|
417 |
+
# Keep your original block for "Titles Only" if you want:
|
418 |
+
if titles_summary:
|
419 |
+
titles = []
|
420 |
+
for line in refs.split('\n'):
|
421 |
+
m = re.search(r"\[([^\]]+)\]", line)
|
422 |
+
if m:
|
423 |
+
titles.append(m.group(1))
|
424 |
+
if titles:
|
425 |
+
titles_text = "Titles: " + ", ".join(titles)
|
426 |
+
titles_text = clean_for_speech(titles_text)
|
427 |
+
audio_file_titles = speak_with_edge_tts(titles_text, selected_voice)
|
428 |
+
st.write("### 🔖 Titles (All-In-One)")
|
429 |
+
play_and_download_audio(audio_file_titles)
|
430 |
+
|
431 |
+
elapsed = time.time()-start
|
432 |
+
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
|
433 |
+
|
434 |
+
# Always create a file with the result
|
435 |
+
create_file(q, result, "md")
|
436 |
+
|
437 |
+
return result
|
438 |
+
|
439 |
def process_with_gpt(text):
|
440 |
"""Process text with GPT-4"""
|
441 |
+
if not text:
|
442 |
return
|
443 |
st.session_state.messages.append({"role":"user","content":text})
|
444 |
with st.chat_message("user"):
|
445 |
st.markdown(text)
|
446 |
with st.chat_message("assistant"):
|
447 |
+
c = openai_client.chat.completions.create(
|
448 |
model=st.session_state["openai_model"],
|
449 |
messages=st.session_state.messages,
|
450 |
stream=False
|
451 |
)
|
452 |
ans = c.choices[0].message.content
|
453 |
+
st.write("GPT-4o: " + ans)
|
454 |
create_file(text, ans, "md")
|
455 |
st.session_state.messages.append({"role":"assistant","content":ans})
|
456 |
return ans
|
457 |
|
458 |
def process_with_claude(text):
|
459 |
"""Process text with Claude"""
|
460 |
+
if not text:
|
461 |
return
|
462 |
with st.chat_message("user"):
|
463 |
st.markdown(text)
|
464 |
with st.chat_message("assistant"):
|
465 |
+
r = claude_client.messages.create(
|
466 |
+
model="claude-3-sonnet-20240229",
|
467 |
+
max_tokens=1000,
|
468 |
+
messages=[{"role":"user","content":text}]
|
469 |
)
|
470 |
+
ans = r.content[0].text
|
471 |
st.write("Claude-3.5: " + ans)
|
472 |
create_file(text, ans, "md")
|
473 |
st.session_state.chat_history.append({"user":text,"claude":ans})
|
474 |
return ans
|
475 |
|
476 |
+
# 📂 10. File Management
|
477 |
def create_zip_of_files(md_files, mp3_files):
|
478 |
"""Create zip with intelligent naming"""
|
479 |
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
|
|
|
507 |
"""Load and group files for sidebar display"""
|
508 |
md_files = glob.glob("*.md")
|
509 |
mp3_files = glob.glob("*.mp3")
|
|
|
510 |
|
511 |
+
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
|
512 |
all_files = md_files + mp3_files
|
513 |
+
|
514 |
groups = defaultdict(list)
|
515 |
for f in all_files:
|
516 |
fname = os.path.basename(f)
|
517 |
+
prefix = fname[:10]
|
518 |
groups[prefix].append(f)
|
519 |
|
520 |
for prefix in groups:
|
521 |
groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True)
|
522 |
|
523 |
sorted_prefixes = sorted(groups.keys(),
|
524 |
+
key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]),
|
525 |
+
reverse=True)
|
526 |
return groups, sorted_prefixes
|
527 |
|
528 |
def extract_keywords_from_md(files):
|
|
|
562 |
if st.button("⬇️ ZipAll"):
|
563 |
z = create_zip_of_files(all_md, all_mp3)
|
564 |
if z:
|
565 |
+
st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True)
|
566 |
|
567 |
for prefix in sorted_prefixes:
|
568 |
files = groups[prefix]
|
|
|
585 |
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
|
586 |
st.write(f"**{fname}** - {ctime}")
|
587 |
|
588 |
+
# 🎯 11. Main Application
|
589 |
+
async def get_available_voices():
|
590 |
+
voices = await edge_tts.list_voices()
|
591 |
+
return [voice["shortName"] for voice in voices]
|
592 |
+
|
593 |
+
@st.cache_resource
|
594 |
+
def fetch_voices():
|
595 |
+
return asyncio.run(get_available_voices())
|
596 |
+
|
597 |
def main():
|
598 |
st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research")
|
599 |
+
tab_main = st.radio("Action:",["🎤 Voice","📸 Media","🔍 ArXiv","📝 Editor"],horizontal=True)
|
600 |
|
601 |
+
mycomponent = components.declare_component("mycomponent", path="mycomponent")
|
602 |
+
val = mycomponent(my_input_value="Hello")
|
|
|
603 |
|
604 |
+
if 'voices' not in st.session_state:
|
605 |
+
st.session_state['voices'] = fetch_voices()
|
606 |
+
|
607 |
+
st.sidebar.markdown("### 🎤 Select Voice for Audio Generation")
|
608 |
+
selected_voice = st.sidebar.selectbox(
|
609 |
+
"Choose a voice:",
|
610 |
+
options=st.session_state['voices'],
|
611 |
+
index=st.session_state['voices'].index("en-US-AriaNeural") if "en-US-AriaNeural" in st.session_state['voices'] else 0
|
612 |
+
)
|
613 |
+
|
614 |
+
# Show input in a text box for editing if detected
|
615 |
+
if val:
|
616 |
+
val_stripped = val.replace('\n', ' ')
|
617 |
+
edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100)
|
618 |
+
run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"])
|
619 |
+
col1, col2 = st.columns(2)
|
620 |
+
with col1:
|
621 |
+
autorun = st.checkbox("⚙ AutoRun", value=True)
|
622 |
+
with col2:
|
623 |
+
full_audio = st.checkbox("📚FullAudio", value=False,
|
624 |
+
help="Generate full audio response")
|
625 |
+
|
626 |
+
input_changed = (val != st.session_state.old_val)
|
627 |
+
|
628 |
+
if autorun and input_changed:
|
629 |
+
st.session_state.old_val = val
|
630 |
+
if run_option == "Arxiv":
|
631 |
+
perform_ai_lookup(
|
632 |
+
edited_input,
|
633 |
+
vocal_summary=True,
|
634 |
+
extended_refs=False,
|
635 |
+
titles_summary=True,
|
636 |
+
full_audio=full_audio,
|
637 |
+
selected_voice=selected_voice
|
638 |
+
)
|
639 |
+
else:
|
640 |
+
if run_option == "GPT-4o":
|
641 |
+
process_with_gpt(edited_input)
|
642 |
+
elif run_option == "Claude-3.5":
|
643 |
+
process_with_claude(edited_input)
|
644 |
+
else:
|
645 |
+
if st.button("▶ Run"):
|
646 |
+
st.session_state.old_val = val
|
647 |
+
if run_option == "Arxiv":
|
648 |
+
perform_ai_lookup(
|
649 |
+
edited_input,
|
650 |
+
vocal_summary=True,
|
651 |
+
extended_refs=False,
|
652 |
+
titles_summary=True,
|
653 |
+
full_audio=full_audio,
|
654 |
+
selected_voice=selected_voice
|
655 |
+
)
|
656 |
+
else:
|
657 |
+
if run_option == "GPT-4o":
|
658 |
+
process_with_gpt(edited_input)
|
659 |
+
elif run_option == "Claude-3.5":
|
660 |
+
process_with_claude(edited_input)
|
661 |
|
662 |
if tab_main == "🔍 ArXiv":
|
663 |
st.subheader("🔍 Query ArXiv")
|
664 |
q = st.text_input("🔍 Query:")
|
665 |
|
666 |
st.markdown("### 🎛 Options")
|
667 |
+
vocal_summary = st.checkbox("🎙ShortAudio", value=True)
|
668 |
+
extended_refs = st.checkbox("📜LongRefs", value=False)
|
669 |
+
titles_summary = st.checkbox("🔖TitlesOnly", value=True)
|
670 |
+
full_audio = st.checkbox("📚FullAudio", value=False,
|
671 |
+
help="Full audio of results")
|
672 |
+
full_transcript = st.checkbox("🧾FullTranscript", value=False,
|
673 |
+
help="Generate a full transcript file")
|
674 |
+
|
675 |
+
if q and st.button("🔍Run"):
|
676 |
+
result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs,
|
677 |
+
titles_summary=titles_summary, full_audio=full_audio, selected_voice=selected_voice)
|
678 |
+
if full_transcript:
|
679 |
+
save_full_transcript(q, result)
|
680 |
|
681 |
+
st.markdown("### Change Prompt & Re-Run")
|
682 |
+
q_new = st.text_input("🔄 Modify Query:")
|
683 |
+
if q_new and st.button("🔄 Re-Run with Modified Query"):
|
684 |
+
result = perform_ai_lookup(q_new, vocal_summary=vocal_summary, extended_refs=extended_refs,
|
685 |
+
titles_summary=titles_summary, full_audio=full_audio, selected_voice=selected_voice)
|
686 |
if full_transcript:
|
687 |
+
save_full_transcript(q_new, result)
|
688 |
|
689 |
elif tab_main == "🎤 Voice":
|
690 |
st.subheader("🎤 Voice Input")
|
|
|
693 |
if st.button("📨 Send"):
|
694 |
process_with_gpt(user_text)
|
695 |
st.subheader("📜 Chat History")
|
696 |
+
t1,t2=st.tabs(["Claude History","GPT-4o History"])
|
697 |
with t1:
|
698 |
for c in st.session_state.chat_history:
|
699 |
st.write("**You:**", c["user"])
|
|
|
707 |
st.header("📸 Images & 🎥 Videos")
|
708 |
tabs = st.tabs(["🖼 Images", "🎥 Video"])
|
709 |
with tabs[0]:
|
710 |
+
imgs = glob.glob("*.png")+glob.glob("*.jpg")
|
711 |
if imgs:
|
712 |
+
c = st.slider("Cols",1,5,3)
|
713 |
+
cols = st.columns(c)
|
714 |
+
for i,f in enumerate(imgs):
|
715 |
+
with cols[i%c]:
|
716 |
+
st.image(Image.open(f),use_container_width=True)
|
717 |
if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
|
718 |
+
a = process_image(f,"Describe this image.")
|
719 |
st.markdown(a)
|
720 |
else:
|
721 |
st.write("No images found.")
|
722 |
with tabs[1]:
|
723 |
+
vids = glob.glob("*.mp4")
|
724 |
if vids:
|
725 |
for v in vids:
|
726 |
with st.expander(f"🎥 {os.path.basename(v)}"):
|
727 |
st.video(v)
|
728 |
if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
|
729 |
+
a = process_video_with_gpt(v,"Describe video.")
|
730 |
st.markdown(a)
|
731 |
else:
|
732 |
st.write("No videos found.")
|
733 |
|
734 |
elif tab_main == "📝 Editor":
|
735 |
+
if getattr(st.session_state,'current_file',None):
|
736 |
+
st.subheader(f"Editing: {st.session_state.current_file}")
|
737 |
+
new_text = st.text_area("✏️ Content:", st.session_state.file_content, height=300)
|
738 |
+
if st.button("💾 Save"):
|
739 |
+
with open(st.session_state.current_file,'w',encoding='utf-8') as f:
|
740 |
+
f.write(new_text)
|
741 |
+
st.success("Updated!")
|
742 |
+
st.session_state.should_rerun = True
|
|
|
|
|
|
|
|
|
|
|
743 |
else:
|
744 |
+
st.write("Select a file from the sidebar to edit.")
|
745 |
|
|
|
746 |
groups, sorted_prefixes = load_files_for_sidebar()
|
747 |
display_file_manager_sidebar(groups, sorted_prefixes)
|
748 |
|
|
|
749 |
if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
|
750 |
st.write("---")
|
751 |
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
|
|
|
754 |
ext = os.path.splitext(fname)[1].lower().strip('.')
|
755 |
st.write(f"### {fname}")
|
756 |
if ext == "md":
|
757 |
+
content = open(f,'r',encoding='utf-8').read()
|
758 |
st.markdown(content)
|
759 |
elif ext == "mp3":
|
760 |
st.audio(f)
|
|
|
765 |
|
766 |
if st.session_state.should_rerun:
|
767 |
st.session_state.should_rerun = False
|
768 |
+
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
769 |
|
770 |
+
if __name__=="__main__":
|
|
|
771 |
main()
|