Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import glob
|
6 |
+
import json
|
7 |
+
import base64
|
8 |
+
import zipfile
|
9 |
+
import random
|
10 |
+
import requests
|
11 |
+
import openai
|
12 |
+
|
13 |
+
from PIL import Image
|
14 |
+
from urllib.parse import quote
|
15 |
+
|
16 |
+
import streamlit as st
|
17 |
+
import streamlit.components.v1 as components
|
18 |
+
|
19 |
+
# Example base snippet: your normal Mermaid code
|
20 |
+
DEFAULT_MERMAID = r"""
|
21 |
+
flowchart LR
|
22 |
+
U((User 😎)) -- "Talk 🗣️" --> LLM[LLM Agent 🤖\nExtract Info]
|
23 |
+
click U "/?q=User%20😎" "Open 'User 😎'" "_blank"
|
24 |
+
click LLM "/?q=LLM%20Agent%20Extract%20Info" "Open LLM Agent" "_blank"
|
25 |
+
|
26 |
+
LLM -- "Query 🔍" --> HS[Hybrid Search 🔎\nVector+NER+Lexical]
|
27 |
+
click HS "/?q=Hybrid%20Search%20Vector+NER+Lexical" "Open Hybrid Search" "_blank"
|
28 |
+
|
29 |
+
HS -- "Reason 🤔" --> RE[Reasoning Engine 🛠️\nNeuralNetwork+Medical]
|
30 |
+
click RE "/?q=Reasoning%20Engine%20NeuralNetwork+Medical" "Open Reasoning" "_blank"
|
31 |
+
|
32 |
+
RE -- "Link 📡" --> KG((Knowledge Graph 📚\nOntology+GAR+RAG))
|
33 |
+
click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" "Open Knowledge Graph" "_blank"
|
34 |
+
"""
|
35 |
+
|
36 |
+
def parse_mermaid_edges(mermaid_text: str):
|
37 |
+
"""
|
38 |
+
🍿 parse_mermaid_edges:
|
39 |
+
- Find lines like `A -- "Label" --> B`.
|
40 |
+
- Return adjacency dict: edges[A] = [(label, B), ...].
|
41 |
+
"""
|
42 |
+
adjacency = {}
|
43 |
+
# Regex to match lines like: A -- "Label" --> B
|
44 |
+
edge_pattern = re.compile(r'(\S+)\s*--\s*"([^"]*)"\s*-->\s*(\S+)')
|
45 |
+
|
46 |
+
# We split the text into lines and search for edges
|
47 |
+
for line in mermaid_text.split('\n'):
|
48 |
+
match = edge_pattern.search(line.strip())
|
49 |
+
if match:
|
50 |
+
nodeA, label, nodeB = match.groups()
|
51 |
+
if nodeA not in adjacency:
|
52 |
+
adjacency[nodeA] = []
|
53 |
+
adjacency[nodeA].append((label, nodeB))
|
54 |
+
|
55 |
+
return adjacency
|
56 |
+
|
57 |
+
def build_subgraph(adjacency, start_node):
|
58 |
+
"""
|
59 |
+
🍎 build_subgraph:
|
60 |
+
- BFS or DFS from start_node to gather edges.
|
61 |
+
- For simplicity, we only gather direct edges from this node.
|
62 |
+
- If you want a multi-level downstream search, do a BFS/DFS deeper.
|
63 |
+
"""
|
64 |
+
sub_edges = []
|
65 |
+
# If start_node has no adjacency, return empty
|
66 |
+
if start_node not in adjacency:
|
67 |
+
return sub_edges
|
68 |
+
|
69 |
+
# For each edge out of start_node, store it in sub_edges
|
70 |
+
for label, child in adjacency[start_node]:
|
71 |
+
sub_edges.append((start_node, label, child))
|
72 |
+
|
73 |
+
return sub_edges
|
74 |
+
|
75 |
+
def create_subgraph_mermaid(sub_edges, start_node):
|
76 |
+
"""
|
77 |
+
🍄 create_subgraph_mermaid:
|
78 |
+
- Given a list of edges in form (A, label, B),
|
79 |
+
- Return a smaller flowchart snippet that includes them.
|
80 |
+
"""
|
81 |
+
# Start with the flowchart directive
|
82 |
+
sub_mermaid = "flowchart LR\n"
|
83 |
+
sub_mermaid += f" %% Subgraph for {start_node}\n"
|
84 |
+
|
85 |
+
# For each edge, build a line: NodeA -- "Label" --> NodeB
|
86 |
+
for (A, label, B) in sub_edges:
|
87 |
+
# Potentially you can keep the original styles or shapes (like U((User 😎))).
|
88 |
+
# If your original code has shapes, you can store them in a dict so A-> "U((User 😎))" etc.
|
89 |
+
sub_mermaid += f' {A} -- "{label}" --> {B}\n'
|
90 |
+
|
91 |
+
# Optionally add a comment to show the subgraph ends
|
92 |
+
sub_mermaid += f" %% End of subgraph for {start_node}\n"
|
93 |
+
return sub_mermaid
|
94 |
+
|
95 |
+
def generate_mermaid_html(mermaid_code: str) -> str:
|
96 |
+
"""Tiny function to embed Mermaid code in HTML with a CDN."""
|
97 |
+
return f"""
|
98 |
+
<html>
|
99 |
+
<head>
|
100 |
+
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
|
101 |
+
<style>
|
102 |
+
.centered-mermaid {{
|
103 |
+
display: flex;
|
104 |
+
justify-content: center;
|
105 |
+
margin: 20px auto;
|
106 |
+
}}
|
107 |
+
.mermaid {{
|
108 |
+
max-width: 800px;
|
109 |
+
}}
|
110 |
+
</style>
|
111 |
+
</head>
|
112 |
+
<body>
|
113 |
+
<div class="mermaid centered-mermaid">
|
114 |
+
{mermaid_code}
|
115 |
+
</div>
|
116 |
+
<script>
|
117 |
+
mermaid.initialize({{ startOnLoad: true }});
|
118 |
+
</script>
|
119 |
+
</body>
|
120 |
+
</html>
|
121 |
+
"""
|
122 |
+
|
123 |
+
def main():
|
124 |
+
st.set_page_config(page_title="Partial Subgraph Demo", layout="wide")
|
125 |
+
st.title("Partial Mermaid Subgraph from a Clicked Node")
|
126 |
+
|
127 |
+
# 1) Show the main diagram
|
128 |
+
st.subheader("Full Diagram:")
|
129 |
+
full_html = generate_mermaid_html(DEFAULT_MERMAID)
|
130 |
+
components.html(full_html, height=400, scrolling=True)
|
131 |
+
|
132 |
+
# 2) Build adjacency from the original code
|
133 |
+
adjacency = parse_mermaid_edges(DEFAULT_MERMAID)
|
134 |
+
|
135 |
+
# 3) See if user clicked a shape, e.g. ?q=LLM%20Agent%20Extract%20Info
|
136 |
+
query_params = st.query_params
|
137 |
+
clicked = (query_params.get('q') or [""])[0] # If present
|
138 |
+
|
139 |
+
if clicked:
|
140 |
+
# The "clicked" node might contain spaces or special chars.
|
141 |
+
# We typically match the "nodeId" from the code.
|
142 |
+
# But your code might have the real node name "LLM" or "RE", etc.
|
143 |
+
# If your node is "LLM" and the label is "LLM Agent Extract Info",
|
144 |
+
# you might need to map them.
|
145 |
+
# For simplicity, let's assume your node ID is the same as the label
|
146 |
+
# after removing spaces.
|
147 |
+
# Or if your original code uses node IDs like 'LLM' or 'U'.
|
148 |
+
# We'll show an example:
|
149 |
+
|
150 |
+
# We can guess your node ID might be "LLM" if the text includes "LLM".
|
151 |
+
# Let's try a simpler approach: you store an internal mapping
|
152 |
+
# from node ID -> label. We'll do a brute force approach:
|
153 |
+
st.info(f"User clicked shape: {clicked}")
|
154 |
+
|
155 |
+
# Suppose we want to find the adjacency key that best matches the clicked string:
|
156 |
+
# This is a naive approach:
|
157 |
+
# We'll see if 'clicked' is a substring of the adjacency's node key.
|
158 |
+
possible_keys = []
|
159 |
+
for nodeKey in adjacency.keys():
|
160 |
+
if clicked.lower().replace("%20", " ").replace("extract info", "") in nodeKey.lower():
|
161 |
+
possible_keys.append(nodeKey)
|
162 |
+
# If we found one or more possible matches, take the first
|
163 |
+
if possible_keys:
|
164 |
+
chosen_node = possible_keys[0]
|
165 |
+
# Build subgraph from adjacency
|
166 |
+
sub_edges = build_subgraph(adjacency, chosen_node)
|
167 |
+
if sub_edges:
|
168 |
+
sub_mermaid = create_subgraph_mermaid(sub_edges, chosen_node)
|
169 |
+
|
170 |
+
# Display top-centered subgraph
|
171 |
+
st.subheader(f"SearchResult Subgraph for Node: {chosen_node}")
|
172 |
+
partial_html = generate_mermaid_html(sub_mermaid)
|
173 |
+
components.html(partial_html, height=300, scrolling=False)
|
174 |
+
else:
|
175 |
+
st.warning(f"No outgoing edges from node '{chosen_node}'.")
|
176 |
+
else:
|
177 |
+
st.warning("No matching node found in adjacency for that query param.")
|
178 |
+
else:
|
179 |
+
st.info("No shape clicked, or no ?q= in the query parameters.")
|
180 |
+
|
181 |
+
|
182 |
+
if __name__ == "__main__":
|
183 |
+
main()
|