Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -19,11 +19,8 @@ import extra_streamlit_components as stx
|
|
19 |
from streamlit.runtime.scriptrunner import get_script_run_ctx
|
20 |
import asyncio
|
21 |
import edge_tts
|
22 |
-
|
23 |
-
# Imports section (add streamlit-marquee)
|
24 |
from streamlit_marquee import streamlit_marquee
|
25 |
|
26 |
-
|
27 |
# 🎯 1. Core Configuration & Setup
|
28 |
st.set_page_config(
|
29 |
page_title="🚲TalkingAIResearcher🏆",
|
@@ -38,40 +35,6 @@ st.set_page_config(
|
|
38 |
)
|
39 |
load_dotenv()
|
40 |
|
41 |
-
|
42 |
-
def display_marquee_controls():
|
43 |
-
st.sidebar.markdown("### 🎯 Marquee Settings")
|
44 |
-
cols = st.sidebar.columns(2)
|
45 |
-
with cols[0]:
|
46 |
-
bg_color = st.color_picker("🎨 Background", "#1E1E1E", key="bg_color_picker")
|
47 |
-
text_color = st.color_picker("✍️ Text", "#FFFFFF", key="text_color_picker")
|
48 |
-
with cols[1]:
|
49 |
-
font_size = st.slider("📏 Size", 10, 24, 14, key="font_size_slider")
|
50 |
-
duration = st.slider("⏱️ Speed", 1, 20, 10, key="duration_slider")
|
51 |
-
|
52 |
-
return {
|
53 |
-
"background": bg_color,
|
54 |
-
"color": text_color,
|
55 |
-
"font-size": f"{font_size}px",
|
56 |
-
"animationDuration": f"{duration}s",
|
57 |
-
"width": "100%",
|
58 |
-
"lineHeight": "35px"
|
59 |
-
}
|
60 |
-
|
61 |
-
|
62 |
-
def display_marquee_controls_papers():
|
63 |
-
return {
|
64 |
-
"background": "#1E1E1E",
|
65 |
-
"color": "#1E1E1E",
|
66 |
-
"font-size": f"24px",
|
67 |
-
"animationDuration": f"20s",
|
68 |
-
"width": "100%",
|
69 |
-
"lineHeight": "35px"
|
70 |
-
}
|
71 |
-
|
72 |
-
# Add global marquee settings
|
73 |
-
marquee_settings = display_marquee_controls()
|
74 |
-
|
75 |
# Add available English voices for Edge TTS
|
76 |
EDGE_TTS_VOICES = [
|
77 |
"en-US-AriaNeural", # Default voice
|
@@ -87,26 +50,9 @@ EDGE_TTS_VOICES = [
|
|
87 |
|
88 |
# Initialize session state variables
|
89 |
if 'tts_voice' not in st.session_state:
|
90 |
-
st.session_state['tts_voice'] = EDGE_TTS_VOICES[0]
|
91 |
if 'audio_format' not in st.session_state:
|
92 |
-
st.session_state['audio_format'] = 'mp3'
|
93 |
-
|
94 |
-
# 🔑 2. API Setup & Clients
|
95 |
-
openai_api_key = os.getenv('OPENAI_API_KEY', "")
|
96 |
-
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
|
97 |
-
xai_key = os.getenv('xai',"")
|
98 |
-
if 'OPENAI_API_KEY' in st.secrets:
|
99 |
-
openai_api_key = st.secrets['OPENAI_API_KEY']
|
100 |
-
if 'ANTHROPIC_API_KEY' in st.secrets:
|
101 |
-
anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
|
102 |
-
|
103 |
-
openai.api_key = openai_api_key
|
104 |
-
claude_client = anthropic.Anthropic(api_key=anthropic_key)
|
105 |
-
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
|
106 |
-
HF_KEY = os.getenv('HF_KEY')
|
107 |
-
API_URL = os.getenv('API_URL')
|
108 |
-
|
109 |
-
# 📝 3. Session State Management
|
110 |
if 'transcript_history' not in st.session_state:
|
111 |
st.session_state['transcript_history'] = []
|
112 |
if 'chat_history' not in st.session_state:
|
@@ -130,109 +76,115 @@ if 'should_rerun' not in st.session_state:
|
|
130 |
if 'old_val' not in st.session_state:
|
131 |
st.session_state['old_val'] = None
|
132 |
if 'last_query' not in st.session_state:
|
133 |
-
st.session_state['last_query'] = ""
|
|
|
|
|
134 |
|
135 |
-
#
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
.
|
141 |
-
|
142 |
-
|
143 |
-
</style>
|
144 |
-
""", unsafe_allow_html=True)
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
FILE_EMOJIS = {
|
147 |
"md": "📝",
|
148 |
"mp3": "🎵",
|
149 |
-
"wav": "🔊"
|
150 |
}
|
151 |
|
152 |
-
#
|
153 |
-
def
|
154 |
-
"""
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology',
|
171 |
-
'cognitive science', 'human computer', 'decision making', 'arxiv search',
|
172 |
-
'research paper', 'scientific study', 'empirical analysis'
|
173 |
-
]
|
174 |
|
175 |
-
|
|
|
|
|
176 |
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower())
|
177 |
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])]
|
178 |
combined = words + bi_grams
|
179 |
-
|
180 |
-
# Filter out stop words and short words
|
181 |
-
filtered = [
|
182 |
-
term for term in combined
|
183 |
-
if term not in stop_words
|
184 |
-
and len(term.split()) <= 2 # Limit to uni-grams and bi-grams
|
185 |
-
and any(c.isalpha() for c in term)
|
186 |
-
]
|
187 |
-
|
188 |
-
# Count frequencies
|
189 |
counter = Counter(filtered)
|
190 |
-
|
191 |
-
return most_common
|
192 |
|
193 |
def clean_text_for_filename(text: str) -> str:
|
194 |
-
"""Remove punctuation and short filler words, return a compact string."""
|
195 |
text = text.lower()
|
196 |
text = re.sub(r'[^\w\s-]', '', text)
|
197 |
words = text.split()
|
198 |
-
stop_short = set(['the','and','for','with','this','that'
|
199 |
-
filtered = [w for w in words if len(w)>3 and w not in stop_short]
|
200 |
return '_'.join(filtered)[:200]
|
201 |
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
def generate_filename(prompt, response, file_type="md"):
|
204 |
-
"""
|
205 |
-
Generate filename with meaningful terms and short dense clips from prompt & response.
|
206 |
-
The filename should be about 150 chars total, include high-info terms, and a clipped snippet.
|
207 |
-
"""
|
208 |
prefix = datetime.now().strftime("%y%m_%H%M") + "_"
|
209 |
combined = (prompt + " " + response).strip()
|
210 |
info_terms = get_high_info_terms(combined, top_n=10)
|
211 |
-
|
212 |
-
# Include a short snippet from prompt and response
|
213 |
snippet = (prompt[:100] + " " + response[:100]).strip()
|
214 |
snippet_cleaned = clean_text_for_filename(snippet)
|
215 |
-
|
216 |
-
# Combine info terms and snippet
|
217 |
name_parts = info_terms + [snippet_cleaned]
|
218 |
full_name = '_'.join(name_parts)
|
219 |
-
|
220 |
-
# Trim to ~150 chars
|
221 |
if len(full_name) > 150:
|
222 |
full_name = full_name[:150]
|
223 |
-
|
224 |
-
filename = f"{prefix}{full_name}.{file_type}"
|
225 |
-
return filename
|
226 |
|
227 |
def create_file(prompt, response, file_type="md"):
|
228 |
-
"""Create file with intelligent naming"""
|
229 |
filename = generate_filename(prompt.strip(), response.strip(), file_type)
|
230 |
with open(filename, 'w', encoding='utf-8') as f:
|
231 |
f.write(prompt + "\n\n" + response)
|
232 |
return filename
|
233 |
|
234 |
def get_download_link(file, file_type="zip"):
|
235 |
-
"""Generate download link for file"""
|
236 |
with open(file, "rb") as f:
|
237 |
b64 = base64.b64encode(f.read()).decode()
|
238 |
if file_type == "zip":
|
@@ -240,37 +192,14 @@ def get_download_link(file, file_type="zip"):
|
|
240 |
elif file_type == "mp3":
|
241 |
return f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">🎵 Download {os.path.basename(file)}</a>'
|
242 |
elif file_type == "wav":
|
243 |
-
return f'<a href="data:audio/wav;base64,{b64}" download="{os.path.basename(file)}">🔊 Download {os.path.basename(file)}</a>'
|
244 |
elif file_type == "md":
|
245 |
return f'<a href="data:text/markdown;base64,{b64}" download="{os.path.basename(file)}">📝 Download {os.path.basename(file)}</a>'
|
246 |
else:
|
247 |
return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}</a>'
|
248 |
|
249 |
-
#
|
250 |
-
def clean_for_speech(text: str) -> str:
|
251 |
-
"""Clean text for speech synthesis"""
|
252 |
-
text = text.replace("\n", " ")
|
253 |
-
text = text.replace("</s>", " ")
|
254 |
-
text = text.replace("#", "")
|
255 |
-
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
|
256 |
-
text = re.sub(r"\s+", " ", text).strip()
|
257 |
-
return text
|
258 |
-
|
259 |
-
@st.cache_resource
|
260 |
-
def speech_synthesis_html(result):
|
261 |
-
"""Create HTML for speech synthesis"""
|
262 |
-
html_code = f"""
|
263 |
-
<html><body>
|
264 |
-
<script>
|
265 |
-
var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
|
266 |
-
window.speechSynthesis.speak(msg);
|
267 |
-
</script>
|
268 |
-
</body></html>
|
269 |
-
"""
|
270 |
-
components.html(html_code, height=0)
|
271 |
-
|
272 |
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
|
273 |
-
"""Generate audio using Edge TTS"""
|
274 |
text = clean_for_speech(text)
|
275 |
if not text.strip():
|
276 |
return None
|
@@ -282,88 +211,16 @@ async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=
|
|
282 |
return out_fn
|
283 |
|
284 |
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
|
285 |
-
"""Wrapper for edge TTS generation"""
|
286 |
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, file_format))
|
287 |
|
288 |
def play_and_download_audio(file_path, file_type="mp3"):
|
289 |
-
"""Play and provide download link for audio"""
|
290 |
if file_path and os.path.exists(file_path):
|
291 |
-
|
292 |
-
st.audio(file_path)
|
293 |
-
elif file_type == "wav":
|
294 |
-
st.audio(file_path)
|
295 |
dl_link = get_download_link(file_path, file_type=file_type)
|
296 |
st.markdown(dl_link, unsafe_allow_html=True)
|
297 |
|
298 |
-
#
|
299 |
-
def process_image(image_path, user_prompt):
|
300 |
-
"""Process image with GPT-4V"""
|
301 |
-
with open(image_path, "rb") as imgf:
|
302 |
-
image_data = imgf.read()
|
303 |
-
b64img = base64.b64encode(image_data).decode("utf-8")
|
304 |
-
resp = openai_client.chat.completions.create(
|
305 |
-
model=st.session_state["openai_model"],
|
306 |
-
messages=[
|
307 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
308 |
-
{"role": "user", "content": [
|
309 |
-
{"type": "text", "text": user_prompt},
|
310 |
-
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
|
311 |
-
]}
|
312 |
-
],
|
313 |
-
temperature=0.0,
|
314 |
-
)
|
315 |
-
return resp.choices[0].message.content
|
316 |
-
|
317 |
-
def process_audio_file(audio_path):
|
318 |
-
"""Process audio with Whisper"""
|
319 |
-
with open(audio_path, "rb") as f:
|
320 |
-
transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f)
|
321 |
-
st.session_state.messages.append({"role": "user", "content": transcription.text})
|
322 |
-
return transcription.text
|
323 |
-
|
324 |
-
def process_video(video_path, seconds_per_frame=1):
|
325 |
-
"""Extract frames from video"""
|
326 |
-
vid = cv2.VideoCapture(video_path)
|
327 |
-
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
|
328 |
-
fps = vid.get(cv2.CAP_PROP_FPS)
|
329 |
-
skip = int(fps*seconds_per_frame)
|
330 |
-
frames_b64 = []
|
331 |
-
for i in range(0, total, skip):
|
332 |
-
vid.set(cv2.CAP_PROP_POS_FRAMES, i)
|
333 |
-
ret, frame = vid.read()
|
334 |
-
if not ret:
|
335 |
-
break
|
336 |
-
_, buf = cv2.imencode(".jpg", frame)
|
337 |
-
frames_b64.append(base64.b64encode(buf).decode("utf-8"))
|
338 |
-
vid.release()
|
339 |
-
return frames_b64
|
340 |
-
|
341 |
-
def process_video_with_gpt(video_path, prompt):
|
342 |
-
"""Analyze video frames with GPT-4V"""
|
343 |
-
frames = process_video(video_path)
|
344 |
-
resp = openai_client.chat.completions.create(
|
345 |
-
model=st.session_state["openai_model"],
|
346 |
-
messages=[
|
347 |
-
{"role":"system","content":"Analyze video frames."},
|
348 |
-
{"role":"user","content":[
|
349 |
-
{"type":"text","text":prompt},
|
350 |
-
*[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
|
351 |
-
]}
|
352 |
-
]
|
353 |
-
)
|
354 |
-
return resp.choices[0].message.content
|
355 |
-
|
356 |
-
# 🤖 9. AI Model Integration
|
357 |
-
|
358 |
-
def save_full_transcript(query, text):
|
359 |
-
"""Save full transcript of Arxiv results as a file."""
|
360 |
-
create_file(query, text, "md")
|
361 |
-
|
362 |
def parse_arxiv_refs(ref_text: str):
|
363 |
-
"""
|
364 |
-
Parse papers by finding lines with two pipe characters as title lines.
|
365 |
-
Returns list of paper dictionaries with audio files.
|
366 |
-
"""
|
367 |
if not ref_text:
|
368 |
return []
|
369 |
|
@@ -372,21 +229,16 @@ def parse_arxiv_refs(ref_text: str):
|
|
372 |
lines = ref_text.split('\n')
|
373 |
|
374 |
for i, line in enumerate(lines):
|
375 |
-
# Check if this is a title line (contains exactly 2 pipe characters)
|
376 |
if line.count('|') == 2:
|
377 |
-
# If we have a previous paper, add it to results
|
378 |
if current_paper:
|
379 |
results.append(current_paper)
|
380 |
-
if len(results) >= 20:
|
381 |
break
|
382 |
|
383 |
-
# Parse new paper header
|
384 |
try:
|
385 |
-
# Remove ** and split by |
|
386 |
header_parts = line.strip('* ').split('|')
|
387 |
date = header_parts[0].strip()
|
388 |
title = header_parts[1].strip()
|
389 |
-
# Extract arXiv URL if present
|
390 |
url_match = re.search(r'(https://arxiv.org/\S+)', line)
|
391 |
url = url_match.group(1) if url_match else f"paper_{len(results)}"
|
392 |
|
@@ -396,85 +248,61 @@ def parse_arxiv_refs(ref_text: str):
|
|
396 |
'url': url,
|
397 |
'authors': '',
|
398 |
'summary': '',
|
399 |
-
'content_start': i + 1
|
400 |
}
|
401 |
except Exception as e:
|
402 |
st.warning(f"Error parsing paper header: {str(e)}")
|
403 |
current_paper = {}
|
404 |
continue
|
405 |
|
406 |
-
# If we have a current paper and this isn't a title line, add to content
|
407 |
elif current_paper:
|
408 |
-
if not current_paper['authors']:
|
409 |
current_paper['authors'] = line.strip('* ')
|
410 |
-
else:
|
411 |
if current_paper['summary']:
|
412 |
current_paper['summary'] += ' ' + line.strip()
|
413 |
else:
|
414 |
current_paper['summary'] = line.strip()
|
415 |
|
416 |
-
# Don't forget the last paper
|
417 |
if current_paper:
|
418 |
results.append(current_paper)
|
419 |
|
420 |
-
return results[:20]
|
421 |
|
422 |
def create_paper_audio_files(papers, input_question):
|
423 |
-
"""
|
424 |
-
Create audio files for each paper's content and add file paths to paper dict.
|
425 |
-
Also, display each audio as it's generated.
|
426 |
-
"""
|
427 |
-
# Collect all content for combined summary
|
428 |
-
combined_titles = []
|
429 |
-
|
430 |
for paper in papers:
|
431 |
try:
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
# Determine file format based on user selection
|
436 |
file_format = st.session_state['audio_format']
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
|
|
|
|
443 |
|
444 |
-
combined_titles.append(paper['title'])
|
445 |
-
|
446 |
except Exception as e:
|
447 |
-
st.warning(f"Error
|
448 |
paper['full_audio'] = None
|
|
|
449 |
|
450 |
-
|
451 |
-
|
452 |
-
combined_text = f"Here are the titles of the papers related to your query: {'; '.join(combined_titles)}. Your original question was: {input_question}"
|
453 |
-
file_format = st.session_state['audio_format']
|
454 |
-
combined_file = speak_with_edge_tts(combined_text, voice=st.session_state['tts_voice'], file_format=file_format)
|
455 |
-
st.write(f"### {FILE_EMOJIS.get(file_format, '')} Combined Summary Audio")
|
456 |
-
play_and_download_audio(combined_file, file_type=file_format)
|
457 |
-
papers.append({'title': 'Combined Summary', 'full_audio': combined_file})
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
def display_papers(papers):
|
462 |
-
"""Display papers with their audio controls and marquee summaries."""
|
463 |
st.write("## Research Papers")
|
464 |
-
marquee_settings = display_marquee_controls_papers()
|
465 |
|
466 |
papercount = 0
|
467 |
for paper in papers:
|
468 |
-
papercount
|
469 |
if papercount <= 20:
|
470 |
-
#
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
key=f"paper_{paper.get('id', random.randint(1000,9999))}"
|
476 |
-
)
|
477 |
-
st.write("")
|
478 |
|
479 |
with st.expander(f"{papercount}. 📄 {paper['title']}", expanded=True):
|
480 |
st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**")
|
@@ -487,9 +315,8 @@ def display_papers(papers):
|
|
487 |
if file_ext in ['mp3', 'wav']:
|
488 |
st.audio(paper['full_audio'])
|
489 |
|
490 |
-
|
491 |
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
|
492 |
-
titles_summary=True, full_audio=False):
|
493 |
"""Perform Arxiv search with audio generation per paper."""
|
494 |
start = time.time()
|
495 |
|
@@ -509,7 +336,10 @@ def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
|
|
509 |
papers = parse_arxiv_refs(refs)
|
510 |
if papers:
|
511 |
create_paper_audio_files(papers, input_question=q)
|
512 |
-
|
|
|
|
|
|
|
513 |
else:
|
514 |
st.warning("No papers found in the response.")
|
515 |
|
@@ -557,30 +387,44 @@ def process_with_claude(text):
|
|
557 |
st.session_state.chat_history.append({"user":text,"claude":ans})
|
558 |
return ans
|
559 |
|
560 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
561 |
def create_zip_of_files(md_files, mp3_files, wav_files, input_question):
|
562 |
-
"""Create zip with intelligent naming based on
|
563 |
-
# Exclude 'readme.md'
|
564 |
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
|
565 |
all_files = md_files + mp3_files + wav_files
|
566 |
if not all_files:
|
567 |
return None
|
568 |
|
569 |
-
# Collect content for high-info term extraction
|
570 |
all_content = []
|
571 |
for f in all_files:
|
572 |
if f.endswith('.md'):
|
573 |
with open(f, 'r', encoding='utf-8') as file:
|
574 |
all_content.append(file.read())
|
575 |
elif f.endswith('.mp3') or f.endswith('.wav'):
|
576 |
-
# Replace underscores with spaces and extract basename without extension
|
577 |
basename = os.path.splitext(os.path.basename(f))[0]
|
578 |
words = basename.replace('_', ' ')
|
579 |
all_content.append(words)
|
580 |
|
581 |
-
# Include the input question
|
582 |
all_content.append(input_question)
|
583 |
-
|
584 |
combined_content = " ".join(all_content)
|
585 |
info_terms = get_high_info_terms(combined_content, top_n=10)
|
586 |
|
@@ -588,41 +432,12 @@ def create_zip_of_files(md_files, mp3_files, wav_files, input_question):
|
|
588 |
name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:10])
|
589 |
zip_name = f"{timestamp}_{name_text}.zip"
|
590 |
|
591 |
-
with zipfile.ZipFile(zip_name,'w') as z:
|
592 |
for f in all_files:
|
593 |
z.write(f)
|
594 |
|
595 |
return zip_name
|
596 |
|
597 |
-
def load_files_for_sidebar():
|
598 |
-
"""Load and group files for sidebar display based on first 9 characters of filename"""
|
599 |
-
md_files = glob.glob("*.md")
|
600 |
-
mp3_files = glob.glob("*.mp3")
|
601 |
-
wav_files = glob.glob("*.wav")
|
602 |
-
|
603 |
-
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
|
604 |
-
all_files = md_files + mp3_files + wav_files
|
605 |
-
|
606 |
-
groups = defaultdict(list)
|
607 |
-
for f in all_files:
|
608 |
-
# Get first 9 characters of filename (timestamp) as group name
|
609 |
-
basename = os.path.basename(f)
|
610 |
-
group_name = basename[:9] if len(basename) >= 9 else 'Other'
|
611 |
-
groups[group_name].append(f)
|
612 |
-
|
613 |
-
# Sort groups based on latest file modification time
|
614 |
-
sorted_groups = sorted(groups.items(), key=lambda x: max(os.path.getmtime(f) for f in x[1]), reverse=True)
|
615 |
-
return sorted_groups
|
616 |
-
|
617 |
-
def extract_keywords_from_md(files):
|
618 |
-
"""Extract keywords from markdown files"""
|
619 |
-
text = ""
|
620 |
-
for f in files:
|
621 |
-
if f.endswith(".md"):
|
622 |
-
c = open(f,'r',encoding='utf-8').read()
|
623 |
-
text += " " + c
|
624 |
-
return get_high_info_terms(text, top_n=5)
|
625 |
-
|
626 |
def display_file_manager_sidebar(groups_sorted):
|
627 |
"""Display file manager in sidebar with timestamp-based groups"""
|
628 |
st.sidebar.title("🎵 Audio & Docs Manager")
|
@@ -657,16 +472,18 @@ def display_file_manager_sidebar(groups_sorted):
|
|
657 |
st.session_state.should_rerun = True
|
658 |
with top_bar[3]:
|
659 |
if st.button("⬇️ ZipAll"):
|
660 |
-
zip_name = create_zip_of_files(all_md, all_mp3, all_wav,
|
|
|
661 |
if zip_name:
|
662 |
-
st.sidebar.markdown(get_download_link(zip_name, file_type="zip"),
|
|
|
663 |
|
664 |
for group_name, files in groups_sorted:
|
665 |
timestamp_dt = datetime.strptime(group_name, "%y%m_%H%M") if len(group_name) == 9 else None
|
666 |
group_label = timestamp_dt.strftime("%Y-%m-%d %H:%M") if timestamp_dt else group_name
|
667 |
|
668 |
with st.sidebar.expander(f"📁 {group_label} ({len(files)})", expanded=True):
|
669 |
-
c1,c2 = st.columns(2)
|
670 |
with c1:
|
671 |
if st.button("👀ViewGrp", key="view_group_"+group_name):
|
672 |
st.session_state.viewing_prefix = group_name
|
@@ -684,57 +501,18 @@ def display_file_manager_sidebar(groups_sorted):
|
|
684 |
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%H:%M:%S")
|
685 |
st.write(f"{emoji} **{fname}** - {ctime}")
|
686 |
|
687 |
-
# 🎯 11. Main Application
|
688 |
def main():
|
|
|
|
|
689 |
|
690 |
-
#
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
# Load files first
|
695 |
-
groups_sorted = load_files_for_sidebar()
|
696 |
-
|
697 |
-
# Marquee display with larger text and dynamic content
|
698 |
-
streamlit_marquee(
|
699 |
-
content=st.session_state['marquee_content'],
|
700 |
-
**{
|
701 |
-
**marquee_settings,
|
702 |
-
"font-size": "28px",
|
703 |
-
"lineHeight": "50px"
|
704 |
-
},
|
705 |
-
key="dynamic_marquee"
|
706 |
-
)
|
707 |
-
|
708 |
-
# Update marquee content when viewing files
|
709 |
-
if st.session_state.viewing_prefix:
|
710 |
-
for group_name, files in groups_sorted:
|
711 |
-
if group_name == st.session_state.viewing_prefix:
|
712 |
-
for f in files:
|
713 |
-
if f.endswith('.md'):
|
714 |
-
with open(f, 'r', encoding='utf-8') as file:
|
715 |
-
st.session_state['marquee_content'] = file.read()[:500]
|
716 |
|
717 |
-
#
|
718 |
-
|
719 |
-
|
720 |
-
# Add global marquee settings near top of main
|
721 |
-
marquee_settings = display_marquee_controls()
|
722 |
-
|
723 |
-
# Initialize content holder in session state if not present
|
724 |
-
if 'marquee_content' not in st.session_state:
|
725 |
-
st.session_state['marquee_content'] = "🚀 Welcome to TalkingAIResearcher | 🤖 Your Research Assistant"
|
726 |
|
727 |
-
# Marquee display with larger text and dynamic content
|
728 |
-
streamlit_marquee(
|
729 |
-
content=st.session_state['marquee_content'],
|
730 |
-
**{
|
731 |
-
**marquee_settings,
|
732 |
-
"font-size": "28px", # Larger default text
|
733 |
-
"lineHeight": "50px" # Increased line height for larger text
|
734 |
-
},
|
735 |
-
key="dynamic_marquee"
|
736 |
-
)
|
737 |
-
|
738 |
# Update marquee content when viewing files
|
739 |
if st.session_state.viewing_prefix:
|
740 |
for group_name, files in groups_sorted:
|
@@ -742,11 +520,9 @@ def main():
|
|
742 |
for f in files:
|
743 |
if f.endswith('.md'):
|
744 |
with open(f, 'r', encoding='utf-8') as file:
|
745 |
-
st.session_state['marquee_content'] = file.read()[:
|
746 |
-
|
747 |
|
748 |
-
|
749 |
-
# Add voice selector to sidebar
|
750 |
st.sidebar.markdown("### 🎤 Voice Settings")
|
751 |
selected_voice = st.sidebar.selectbox(
|
752 |
"Select TTS Voice:",
|
@@ -754,15 +530,14 @@ def main():
|
|
754 |
index=EDGE_TTS_VOICES.index(st.session_state['tts_voice'])
|
755 |
)
|
756 |
|
757 |
-
#
|
758 |
st.sidebar.markdown("### 🔊 Audio Format")
|
759 |
selected_format = st.sidebar.radio(
|
760 |
"Choose Audio Format:",
|
761 |
options=["MP3", "WAV"],
|
762 |
-
index=0
|
763 |
)
|
764 |
|
765 |
-
# Update session state if voice or format changes
|
766 |
if selected_voice != st.session_state['tts_voice']:
|
767 |
st.session_state['tts_voice'] = selected_voice
|
768 |
st.rerun()
|
@@ -770,33 +545,33 @@ def main():
|
|
770 |
st.session_state['audio_format'] = selected_format.lower()
|
771 |
st.rerun()
|
772 |
|
773 |
-
|
|
|
|
|
774 |
|
775 |
mycomponent = components.declare_component("mycomponent", path="mycomponent")
|
776 |
val = mycomponent(my_input_value="Hello")
|
777 |
|
778 |
-
# Show input in a text box for editing if detected
|
779 |
if val:
|
780 |
val_stripped = val.replace('\\n', ' ')
|
781 |
edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100)
|
782 |
-
#edited_input = edited_input.replace('\n', ' ')
|
783 |
|
784 |
run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"])
|
785 |
col1, col2 = st.columns(2)
|
786 |
with col1:
|
787 |
autorun = st.checkbox("⚙ AutoRun", value=True)
|
788 |
with col2:
|
789 |
-
full_audio = st.checkbox("📚FullAudio", value=False
|
790 |
-
help="Generate full audio response")
|
791 |
|
792 |
input_changed = (val != st.session_state.old_val)
|
793 |
|
794 |
if autorun and input_changed:
|
795 |
st.session_state.old_val = val
|
796 |
-
st.session_state.last_query = edited_input
|
797 |
if run_option == "Arxiv":
|
798 |
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
|
799 |
-
|
|
|
800 |
else:
|
801 |
if run_option == "GPT-4o":
|
802 |
process_with_gpt(edited_input)
|
@@ -805,23 +580,19 @@ def main():
|
|
805 |
else:
|
806 |
if st.button("▶ Run"):
|
807 |
st.session_state.old_val = val
|
808 |
-
st.session_state.last_query = edited_input
|
809 |
if run_option == "Arxiv":
|
810 |
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
|
811 |
-
|
|
|
812 |
else:
|
813 |
if run_option == "GPT-4o":
|
814 |
process_with_gpt(edited_input)
|
815 |
elif run_option == "Claude-3.5":
|
816 |
process_with_claude(edited_input)
|
817 |
|
818 |
-
|
819 |
if tab_main == "🔍 ArXiv":
|
820 |
-
papers = parse_arxiv_refs(refs)
|
821 |
-
if papers:
|
822 |
-
paper_texts = [f"📄 {p['title']} | {p['authors']}" for p in papers]
|
823 |
-
st.session_state['marquee_content'] = " ⭐ ".join(paper_texts)
|
824 |
-
|
825 |
st.subheader("🔍 Query ArXiv")
|
826 |
q = st.text_input("🔍 Query:")
|
827 |
|
@@ -829,35 +600,28 @@ def main():
|
|
829 |
vocal_summary = st.checkbox("🎙ShortAudio", value=True)
|
830 |
extended_refs = st.checkbox("📜LongRefs", value=False)
|
831 |
titles_summary = st.checkbox("🔖TitlesOnly", value=True)
|
832 |
-
full_audio = st.checkbox("📚FullAudio", value=False
|
833 |
-
|
834 |
-
full_transcript = st.checkbox("🧾FullTranscript", value=False,
|
835 |
-
help="Generate a full transcript file")
|
836 |
|
837 |
if q and st.button("🔍Run"):
|
838 |
-
st.session_state.last_query = q
|
839 |
result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs,
|
840 |
-
|
|
|
841 |
if full_transcript:
|
842 |
-
|
843 |
-
|
844 |
-
st.markdown("### Change Prompt & Re-Run")
|
845 |
-
q_new = st.text_input("🔄 Modify Query:")
|
846 |
-
if q_new and st.button("🔄 Re-Run with Modified Query"):
|
847 |
-
st.session_state.last_query = q_new # Update last query
|
848 |
-
result = perform_ai_lookup(q_new, vocal_summary=vocal_summary, extended_refs=extended_refs,
|
849 |
-
titles_summary=titles_summary, full_audio=full_audio)
|
850 |
-
if full_transcript:
|
851 |
-
save_full_transcript(q_new, result)
|
852 |
|
|
|
853 |
elif tab_main == "🎤 Voice":
|
854 |
st.subheader("🎤 Voice Input")
|
855 |
user_text = st.text_area("💬 Message:", height=100)
|
856 |
user_text = user_text.strip().replace('\n', ' ')
|
|
|
857 |
if st.button("📨 Send"):
|
858 |
process_with_gpt(user_text)
|
|
|
859 |
st.subheader("📜 Chat History")
|
860 |
-
t1,t2=st.tabs(["Claude History","GPT-4o History"])
|
861 |
with t1:
|
862 |
for c in st.session_state.chat_history:
|
863 |
st.write("**You:**", c["user"])
|
@@ -867,22 +631,33 @@ def main():
|
|
867 |
with st.chat_message(m["role"]):
|
868 |
st.markdown(m["content"])
|
869 |
|
|
|
870 |
elif tab_main == "📸 Media":
|
871 |
st.header("📸 Images & 🎥 Videos")
|
872 |
tabs = st.tabs(["🖼 Images", "🎥 Video"])
|
873 |
with tabs[0]:
|
874 |
-
imgs = glob.glob("*.png")+glob.glob("*.jpg")
|
875 |
if imgs:
|
876 |
-
c = st.slider("Cols",1,5,3)
|
877 |
cols = st.columns(c)
|
878 |
-
for i,f in enumerate(imgs):
|
879 |
-
with cols[i%c]:
|
880 |
-
st.image(Image.open(f),use_container_width=True)
|
881 |
if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
|
882 |
-
|
883 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
884 |
else:
|
885 |
st.write("No images found.")
|
|
|
886 |
with tabs[1]:
|
887 |
vids = glob.glob("*.mp4")
|
888 |
if vids:
|
@@ -890,27 +665,40 @@ def main():
|
|
890 |
with st.expander(f"🎥 {os.path.basename(v)}"):
|
891 |
st.video(v)
|
892 |
if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
|
893 |
-
|
894 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
895 |
else:
|
896 |
st.write("No videos found.")
|
897 |
|
|
|
898 |
elif tab_main == "📝 Editor":
|
899 |
-
if
|
900 |
-
st.subheader(f"Editing: {st.session_state.
|
901 |
-
new_text = st.text_area("✏️ Content:", st.session_state.
|
902 |
if st.button("💾 Save"):
|
903 |
-
with open(st.session_state.
|
904 |
f.write(new_text)
|
905 |
-
st.success("
|
906 |
st.session_state.should_rerun = True
|
|
|
907 |
else:
|
908 |
st.write("Select a file from the sidebar to edit.")
|
909 |
|
910 |
-
#
|
911 |
-
groups_sorted = load_files_for_sidebar()
|
912 |
display_file_manager_sidebar(groups_sorted)
|
913 |
|
|
|
914 |
if st.session_state.viewing_prefix and any(st.session_state.viewing_prefix == group for group, _ in groups_sorted):
|
915 |
st.write("---")
|
916 |
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
|
@@ -921,146 +709,30 @@ def main():
|
|
921 |
ext = os.path.splitext(fname)[1].lower().strip('.')
|
922 |
st.write(f"### {fname}")
|
923 |
if ext == "md":
|
924 |
-
content = open(f,'r',encoding='utf-8').read()
|
925 |
st.markdown(content)
|
926 |
-
elif ext
|
927 |
st.audio(f)
|
928 |
-
elif ext == "wav":
|
929 |
-
st.audio(f) # 🆕 Handle WAV files
|
930 |
else:
|
931 |
st.markdown(get_download_link(f), unsafe_allow_html=True)
|
932 |
break
|
933 |
if st.button("❌ Close"):
|
934 |
st.session_state.viewing_prefix = None
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
### 2.1 Level 0: No AI
|
949 |
-
- **Narrow Non-AI**
|
950 |
-
- Calculator software; compiler
|
951 |
-
- **General Non-AI**
|
952 |
-
- Human-in-the-loop computing, e.g., Amazon Mechanical Turk
|
953 |
-
|
954 |
-
### 2.2 Level 1: Emerging
|
955 |
-
*equal to or somewhat better than an unskilled human*
|
956 |
-
- **Emerging Narrow AI**
|
957 |
-
- GOFAI; simple rule-based systems
|
958 |
-
- Example: SHRDLU
|
959 |
-
- *Reference:* Winograd, T. (1971). **Procedures as a Representation for Data in a Computer Program for Understanding Natural Language**. MIT AI Technical Report. [Link](https://dspace.mit.edu/handle/1721.1/7095)
|
960 |
-
- **Emerging AGI**
|
961 |
-
- ChatGPT (OpenAI, 2023)
|
962 |
-
- Bard (Anil et al., 2023)
|
963 |
-
- *Reference:* Anil, R., et al. (2023). **Bard: Google’s AI Chatbot**. [arXiv](https://arxiv.org/abs/2303.12712)
|
964 |
-
- LLaMA 2 (Touvron et al., 2023)
|
965 |
-
- *Reference:* Touvron, H., et al. (2023). **LLaMA 2: Open and Efficient Foundation Language Models**. [arXiv](https://arxiv.org/abs/2307.09288)
|
966 |
-
|
967 |
-
### 2.3 Level 2: Competent
|
968 |
-
*at least 50th percentile of skilled adults*
|
969 |
-
- **Competent Narrow AI**
|
970 |
-
- Toxicity detectors such as Jigsaw
|
971 |
-
- *Reference:* Das, S., et al. (2022). **Toxicity Detection at Scale with Jigsaw**. [arXiv](https://arxiv.org/abs/2204.06905)
|
972 |
-
- Smart Speakers (Apple, Amazon, Google)
|
973 |
-
- VQA systems (PaLI)
|
974 |
-
- *Reference:* Chen, T., et al. (2023). **PaLI: Pathways Language and Image model**. [arXiv](https://arxiv.org/abs/2301.01298)
|
975 |
-
- Watson (IBM)
|
976 |
-
- SOTA LLMs for subsets of tasks
|
977 |
-
- **Competent AGI**
|
978 |
-
- Not yet achieved
|
979 |
-
|
980 |
-
### 2.4 Level 3: Expert
|
981 |
-
*at least 90th percentile of skilled adults*
|
982 |
-
- **Expert Narrow AI**
|
983 |
-
- Spelling & grammar checkers (Grammarly, 2023)
|
984 |
-
- Generative image models
|
985 |
-
- Example: Imagen
|
986 |
-
- *Reference:* Saharia, C., et al. (2022). **Imagen: Photorealistic Text-to-Image Diffusion Models**. [arXiv](https://arxiv.org/abs/2205.11487)
|
987 |
-
- Example: DALL·E 2
|
988 |
-
- *Reference:* Ramesh, A., et al. (2022). **Hierarchical Text-Conditional Image Generation with CLIP Latents**. [arXiv](https://arxiv.org/abs/2204.06125)
|
989 |
-
- **Expert AGI**
|
990 |
-
- Not yet achieved
|
991 |
-
|
992 |
-
### 2.5 Level 4: Virtuoso
|
993 |
-
*at least 99th percentile of skilled adults*
|
994 |
-
- **Virtuoso Narrow AI**
|
995 |
-
- Deep Blue
|
996 |
-
- *Reference:* Campbell, M., et al. (2002). **Deep Blue**. IBM Journal of Research and Development. [Link](https://research.ibm.com/publications/deep-blue)
|
997 |
-
- AlphaGo
|
998 |
-
- *Reference:* Silver, D., et al. (2016, 2017). **Mastering the Game of Go with Deep Neural Networks and Tree Search**. [Nature](https://www.nature.com/articles/nature16961)
|
999 |
-
- **Virtuoso AGI**
|
1000 |
-
- Not yet achieved
|
1001 |
-
|
1002 |
-
### 2.6 Level 5: Superhuman
|
1003 |
-
*outperforms 100% of humans*
|
1004 |
-
- **Superhuman Narrow AI**
|
1005 |
-
- AlphaFold
|
1006 |
-
- *Reference:* Jumper, J., et al. (2021). **Highly Accurate Protein Structure Prediction with AlphaFold**. [Nature](https://www.nature.com/articles/s41586-021-03819-2)
|
1007 |
-
- AlphaZero
|
1008 |
-
- *Reference:* Silver, D., et al. (2018). **A General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play**. [Science](https://www.science.org/doi/10.1126/science.aar6404)
|
1009 |
-
- StockFish
|
1010 |
-
- *Reference:* Stockfish (2023). **Stockfish Chess Engine**. [Website](https://stockfishchess.org)
|
1011 |
-
- **Artificial Superintelligence (ASI)**
|
1012 |
-
- Not yet achieved
|
1013 |
-
|
1014 |
-
|
1015 |
-
# 🧬 Innovative Architecture of AlphaFold2: A Hybrid System
|
1016 |
-
|
1017 |
-
## 1. 🔢 Input Sequence
|
1018 |
-
- The process starts with an **input sequence** (protein sequence).
|
1019 |
-
|
1020 |
-
## 2. 🗄️ Database Searches
|
1021 |
-
- **Genetic database search** 🔍
|
1022 |
-
- Searches genetic databases to retrieve related sequences.
|
1023 |
-
- **Structure database search** 🔍
|
1024 |
-
- Searches structural databases for template structures.
|
1025 |
-
- **Pairing** 🤝
|
1026 |
-
- Aligns sequences and structures for further analysis.
|
1027 |
-
|
1028 |
-
## 3. 🧩 MSA (Multiple Sequence Alignment)
|
1029 |
-
- **MSA representation** 📊 (r,c)
|
1030 |
-
- Representation of multiple aligned sequences used as input.
|
1031 |
-
|
1032 |
-
## 4. 📑 Templates
|
1033 |
-
- Template structures are paired to assist the model.
|
1034 |
-
|
1035 |
-
## 5. 🔄 Evoformer (48 blocks)
|
1036 |
-
- A **deep learning module** that refines representations:
|
1037 |
-
- **MSA representation** 🧱
|
1038 |
-
- **Pair representation** 🧱 (r,c)
|
1039 |
-
|
1040 |
-
## 6. 🧱 Structure Module (8 blocks)
|
1041 |
-
- Converts the representations into:
|
1042 |
-
- **Single representation** (r,c)
|
1043 |
-
- **Pair representation** (r,c)
|
1044 |
-
|
1045 |
-
## 7. 🧬 3D Structure Prediction
|
1046 |
-
- The structure module predicts the **3D protein structure**.
|
1047 |
-
- **Confidence levels**:
|
1048 |
-
- 🔵 *High confidence*
|
1049 |
-
- 🟠 *Low confidence*
|
1050 |
-
|
1051 |
-
## 8. ♻️ Recycling (Three Times)
|
1052 |
-
- The model **recycles** its output up to three times to refine the prediction.
|
1053 |
-
|
1054 |
-
## 9. 📚 Reference
|
1055 |
-
**Jumper, J., et al. (2021).** Highly Accurate Protein Structure Prediction with AlphaFold. *Nature.*
|
1056 |
-
🔗 [Nature Publication Link](https://www.nature.com/articles/s41586-021-03819-2)
|
1057 |
-
|
1058 |
-
"""
|
1059 |
-
st.sidebar.markdown(markdownPapers)
|
1060 |
-
|
1061 |
if st.session_state.should_rerun:
|
1062 |
st.session_state.should_rerun = False
|
1063 |
st.rerun()
|
1064 |
|
1065 |
-
if __name__=="__main__":
|
1066 |
main()
|
|
|
19 |
from streamlit.runtime.scriptrunner import get_script_run_ctx
|
20 |
import asyncio
|
21 |
import edge_tts
|
|
|
|
|
22 |
from streamlit_marquee import streamlit_marquee
|
23 |
|
|
|
24 |
# 🎯 1. Core Configuration & Setup
|
25 |
st.set_page_config(
|
26 |
page_title="🚲TalkingAIResearcher🏆",
|
|
|
35 |
)
|
36 |
load_dotenv()
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Add available English voices for Edge TTS
|
39 |
EDGE_TTS_VOICES = [
|
40 |
"en-US-AriaNeural", # Default voice
|
|
|
50 |
|
51 |
# Initialize session state variables
|
52 |
if 'tts_voice' not in st.session_state:
|
53 |
+
st.session_state['tts_voice'] = EDGE_TTS_VOICES[0]
|
54 |
if 'audio_format' not in st.session_state:
|
55 |
+
st.session_state['audio_format'] = 'mp3'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
if 'transcript_history' not in st.session_state:
|
57 |
st.session_state['transcript_history'] = []
|
58 |
if 'chat_history' not in st.session_state:
|
|
|
76 |
if 'old_val' not in st.session_state:
|
77 |
st.session_state['old_val'] = None
|
78 |
if 'last_query' not in st.session_state:
|
79 |
+
st.session_state['last_query'] = ""
|
80 |
+
if 'marquee_content' not in st.session_state:
|
81 |
+
st.session_state['marquee_content'] = "🚀 Welcome to TalkingAIResearcher | 🤖 Your Research Assistant"
|
82 |
|
83 |
+
# 🔑 2. API Setup & Clients
|
84 |
+
openai_api_key = os.getenv('OPENAI_API_KEY', "")
|
85 |
+
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
|
86 |
+
xai_key = os.getenv('xai',"")
|
87 |
+
if 'OPENAI_API_KEY' in st.secrets:
|
88 |
+
openai_api_key = st.secrets['OPENAI_API_KEY']
|
89 |
+
if 'ANTHROPIC_API_KEY' in st.secrets:
|
90 |
+
anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
|
|
|
|
|
91 |
|
92 |
+
openai.api_key = openai_api_key
|
93 |
+
claude_client = anthropic.Anthropic(api_key=anthropic_key)
|
94 |
+
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
|
95 |
+
HF_KEY = os.getenv('HF_KEY')
|
96 |
+
API_URL = os.getenv('API_URL')
|
97 |
+
|
98 |
+
# Constants
|
99 |
FILE_EMOJIS = {
|
100 |
"md": "📝",
|
101 |
"mp3": "🎵",
|
102 |
+
"wav": "🔊"
|
103 |
}
|
104 |
|
105 |
+
# Marquee Functions
|
106 |
+
def get_marquee_settings():
|
107 |
+
"""Get global marquee settings from sidebar controls"""
|
108 |
+
st.sidebar.markdown("### 🎯 Marquee Settings")
|
109 |
+
cols = st.sidebar.columns(2)
|
110 |
+
with cols[0]:
|
111 |
+
bg_color = st.color_picker("🎨 Background", "#1E1E1E", key="bg_color_picker")
|
112 |
+
text_color = st.color_picker("✍️ Text", "#FFFFFF", key="text_color_picker")
|
113 |
+
with cols[1]:
|
114 |
+
font_size = st.slider("📏 Size", 10, 24, 14, key="font_size_slider")
|
115 |
+
duration = st.slider("⏱️ Speed", 1, 20, 10, key="duration_slider")
|
116 |
+
|
117 |
+
return {
|
118 |
+
"background": bg_color,
|
119 |
+
"color": text_color,
|
120 |
+
"font-size": f"{font_size}px",
|
121 |
+
"animationDuration": f"{duration}s",
|
122 |
+
"width": "100%",
|
123 |
+
"lineHeight": "35px"
|
124 |
+
}
|
125 |
+
|
126 |
+
def display_marquee(text, settings, key_suffix=""):
|
127 |
+
"""Display marquee with given text and settings"""
|
128 |
+
truncated_text = text[:280] + "..." if len(text) > 280 else text
|
129 |
+
streamlit_marquee(
|
130 |
+
content=truncated_text,
|
131 |
+
**settings,
|
132 |
+
key=f"marquee_{key_suffix}"
|
133 |
+
)
|
134 |
+
st.write("")
|
135 |
|
136 |
+
def process_paper_content(paper):
|
137 |
+
"""Process paper content for marquee and audio"""
|
138 |
+
marquee_text = f"📄 {paper['title']} | 👤 {paper['authors'][:100]} | 📝 {paper['summary'][:100]}"
|
139 |
+
audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}"
|
140 |
+
return marquee_text, audio_text
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
# Text Processing Functions
|
143 |
+
def get_high_info_terms(text: str, top_n=10) -> list:
|
144 |
+
stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with'])
|
145 |
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower())
|
146 |
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])]
|
147 |
combined = words + bi_grams
|
148 |
+
filtered = [term for term in combined if term not in stop_words and len(term.split()) <= 2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
counter = Counter(filtered)
|
150 |
+
return [term for term, freq in counter.most_common(top_n)]
|
|
|
151 |
|
152 |
def clean_text_for_filename(text: str) -> str:
|
|
|
153 |
text = text.lower()
|
154 |
text = re.sub(r'[^\w\s-]', '', text)
|
155 |
words = text.split()
|
156 |
+
stop_short = set(['the', 'and', 'for', 'with', 'this', 'that'])
|
157 |
+
filtered = [w for w in words if len(w) > 3 and w not in stop_short]
|
158 |
return '_'.join(filtered)[:200]
|
159 |
|
160 |
+
def clean_for_speech(text: str) -> str:
|
161 |
+
text = text.replace("\n", " ")
|
162 |
+
text = text.replace("</s>", " ")
|
163 |
+
text = text.replace("#", "")
|
164 |
+
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
|
165 |
+
text = re.sub(r"\s+", " ", text).strip()
|
166 |
+
return text
|
167 |
+
|
168 |
+
# File Operations
|
169 |
def generate_filename(prompt, response, file_type="md"):
|
|
|
|
|
|
|
|
|
170 |
prefix = datetime.now().strftime("%y%m_%H%M") + "_"
|
171 |
combined = (prompt + " " + response).strip()
|
172 |
info_terms = get_high_info_terms(combined, top_n=10)
|
|
|
|
|
173 |
snippet = (prompt[:100] + " " + response[:100]).strip()
|
174 |
snippet_cleaned = clean_text_for_filename(snippet)
|
|
|
|
|
175 |
name_parts = info_terms + [snippet_cleaned]
|
176 |
full_name = '_'.join(name_parts)
|
|
|
|
|
177 |
if len(full_name) > 150:
|
178 |
full_name = full_name[:150]
|
179 |
+
return f"{prefix}{full_name}.{file_type}"
|
|
|
|
|
180 |
|
181 |
def create_file(prompt, response, file_type="md"):
|
|
|
182 |
filename = generate_filename(prompt.strip(), response.strip(), file_type)
|
183 |
with open(filename, 'w', encoding='utf-8') as f:
|
184 |
f.write(prompt + "\n\n" + response)
|
185 |
return filename
|
186 |
|
187 |
def get_download_link(file, file_type="zip"):
|
|
|
188 |
with open(file, "rb") as f:
|
189 |
b64 = base64.b64encode(f.read()).decode()
|
190 |
if file_type == "zip":
|
|
|
192 |
elif file_type == "mp3":
|
193 |
return f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">🎵 Download {os.path.basename(file)}</a>'
|
194 |
elif file_type == "wav":
|
195 |
+
return f'<a href="data:audio/wav;base64,{b64}" download="{os.path.basename(file)}">🔊 Download {os.path.basename(file)}</a>'
|
196 |
elif file_type == "md":
|
197 |
return f'<a href="data:text/markdown;base64,{b64}" download="{os.path.basename(file)}">📝 Download {os.path.basename(file)}</a>'
|
198 |
else:
|
199 |
return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}</a>'
|
200 |
|
201 |
+
# Audio Processing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
|
|
|
203 |
text = clean_for_speech(text)
|
204 |
if not text.strip():
|
205 |
return None
|
|
|
211 |
return out_fn
|
212 |
|
213 |
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
|
|
|
214 |
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, file_format))
|
215 |
|
216 |
def play_and_download_audio(file_path, file_type="mp3"):
|
|
|
217 |
if file_path and os.path.exists(file_path):
|
218 |
+
st.audio(file_path)
|
|
|
|
|
|
|
219 |
dl_link = get_download_link(file_path, file_type=file_type)
|
220 |
st.markdown(dl_link, unsafe_allow_html=True)
|
221 |
|
222 |
+
# Paper Processing Functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
def parse_arxiv_refs(ref_text: str):
|
|
|
|
|
|
|
|
|
224 |
if not ref_text:
|
225 |
return []
|
226 |
|
|
|
229 |
lines = ref_text.split('\n')
|
230 |
|
231 |
for i, line in enumerate(lines):
|
|
|
232 |
if line.count('|') == 2:
|
|
|
233 |
if current_paper:
|
234 |
results.append(current_paper)
|
235 |
+
if len(results) >= 20:
|
236 |
break
|
237 |
|
|
|
238 |
try:
|
|
|
239 |
header_parts = line.strip('* ').split('|')
|
240 |
date = header_parts[0].strip()
|
241 |
title = header_parts[1].strip()
|
|
|
242 |
url_match = re.search(r'(https://arxiv.org/\S+)', line)
|
243 |
url = url_match.group(1) if url_match else f"paper_{len(results)}"
|
244 |
|
|
|
248 |
'url': url,
|
249 |
'authors': '',
|
250 |
'summary': '',
|
251 |
+
'content_start': i + 1
|
252 |
}
|
253 |
except Exception as e:
|
254 |
st.warning(f"Error parsing paper header: {str(e)}")
|
255 |
current_paper = {}
|
256 |
continue
|
257 |
|
|
|
258 |
elif current_paper:
|
259 |
+
if not current_paper['authors']:
|
260 |
current_paper['authors'] = line.strip('* ')
|
261 |
+
else:
|
262 |
if current_paper['summary']:
|
263 |
current_paper['summary'] += ' ' + line.strip()
|
264 |
else:
|
265 |
current_paper['summary'] = line.strip()
|
266 |
|
|
|
267 |
if current_paper:
|
268 |
results.append(current_paper)
|
269 |
|
270 |
+
return results[:20]
|
271 |
|
272 |
def create_paper_audio_files(papers, input_question):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
for paper in papers:
|
274 |
try:
|
275 |
+
marquee_text, audio_text = process_paper_content(paper)
|
276 |
+
|
277 |
+
audio_text = clean_for_speech(audio_text)
|
|
|
278 |
file_format = st.session_state['audio_format']
|
279 |
+
audio_file = speak_with_edge_tts(audio_text,
|
280 |
+
voice=st.session_state['tts_voice'],
|
281 |
+
file_format=file_format)
|
282 |
+
paper['full_audio'] = audio_file
|
283 |
+
|
284 |
+
st.write(f"### {FILE_EMOJIS.get(file_format, '')} {os.path.basename(audio_file)}")
|
285 |
+
play_and_download_audio(audio_file, file_type=file_format)
|
286 |
+
paper['marquee_text'] = marquee_text
|
287 |
|
|
|
|
|
288 |
except Exception as e:
|
289 |
+
st.warning(f"Error processing paper {paper['title']}: {str(e)}")
|
290 |
paper['full_audio'] = None
|
291 |
+
paper['marquee_text'] = None
|
292 |
|
293 |
+
def display_papers(papers, marquee_settings):
|
294 |
+
"""Display papers with their audio controls and marquee summaries"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
st.write("## Research Papers")
|
|
|
296 |
|
297 |
papercount = 0
|
298 |
for paper in papers:
|
299 |
+
papercount += 1
|
300 |
if papercount <= 20:
|
301 |
+
# Display marquee if text exists
|
302 |
+
if paper.get('marquee_text'):
|
303 |
+
display_marquee(paper['marquee_text'],
|
304 |
+
marquee_settings,
|
305 |
+
key_suffix=f"paper_{papercount}")
|
|
|
|
|
|
|
306 |
|
307 |
with st.expander(f"{papercount}. 📄 {paper['title']}", expanded=True):
|
308 |
st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**")
|
|
|
315 |
if file_ext in ['mp3', 'wav']:
|
316 |
st.audio(paper['full_audio'])
|
317 |
|
|
|
318 |
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
|
319 |
+
titles_summary=True, full_audio=False, marquee_settings=None):
|
320 |
"""Perform Arxiv search with audio generation per paper."""
|
321 |
start = time.time()
|
322 |
|
|
|
336 |
papers = parse_arxiv_refs(refs)
|
337 |
if papers:
|
338 |
create_paper_audio_files(papers, input_question=q)
|
339 |
+
if marquee_settings:
|
340 |
+
display_papers(papers, marquee_settings)
|
341 |
+
else:
|
342 |
+
display_papers(papers, get_marquee_settings())
|
343 |
else:
|
344 |
st.warning("No papers found in the response.")
|
345 |
|
|
|
387 |
st.session_state.chat_history.append({"user":text,"claude":ans})
|
388 |
return ans
|
389 |
|
390 |
+
def load_files_for_sidebar():
|
391 |
+
"""Load and group files for sidebar display based on first 9 characters of filename"""
|
392 |
+
md_files = glob.glob("*.md")
|
393 |
+
mp3_files = glob.glob("*.mp3")
|
394 |
+
wav_files = glob.glob("*.wav")
|
395 |
+
|
396 |
+
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
|
397 |
+
all_files = md_files + mp3_files + wav_files
|
398 |
+
|
399 |
+
groups = defaultdict(list)
|
400 |
+
for f in all_files:
|
401 |
+
basename = os.path.basename(f)
|
402 |
+
group_name = basename[:9] if len(basename) >= 9 else 'Other'
|
403 |
+
groups[group_name].append(f)
|
404 |
+
|
405 |
+
sorted_groups = sorted(groups.items(),
|
406 |
+
key=lambda x: max(os.path.getmtime(f) for f in x[1]),
|
407 |
+
reverse=True)
|
408 |
+
return sorted_groups
|
409 |
+
|
410 |
def create_zip_of_files(md_files, mp3_files, wav_files, input_question):
|
411 |
+
"""Create zip with intelligent naming based on high-info terms"""
|
|
|
412 |
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
|
413 |
all_files = md_files + mp3_files + wav_files
|
414 |
if not all_files:
|
415 |
return None
|
416 |
|
|
|
417 |
all_content = []
|
418 |
for f in all_files:
|
419 |
if f.endswith('.md'):
|
420 |
with open(f, 'r', encoding='utf-8') as file:
|
421 |
all_content.append(file.read())
|
422 |
elif f.endswith('.mp3') or f.endswith('.wav'):
|
|
|
423 |
basename = os.path.splitext(os.path.basename(f))[0]
|
424 |
words = basename.replace('_', ' ')
|
425 |
all_content.append(words)
|
426 |
|
|
|
427 |
all_content.append(input_question)
|
|
|
428 |
combined_content = " ".join(all_content)
|
429 |
info_terms = get_high_info_terms(combined_content, top_n=10)
|
430 |
|
|
|
432 |
name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:10])
|
433 |
zip_name = f"{timestamp}_{name_text}.zip"
|
434 |
|
435 |
+
with zipfile.ZipFile(zip_name, 'w') as z:
|
436 |
for f in all_files:
|
437 |
z.write(f)
|
438 |
|
439 |
return zip_name
|
440 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
def display_file_manager_sidebar(groups_sorted):
|
442 |
"""Display file manager in sidebar with timestamp-based groups"""
|
443 |
st.sidebar.title("🎵 Audio & Docs Manager")
|
|
|
472 |
st.session_state.should_rerun = True
|
473 |
with top_bar[3]:
|
474 |
if st.button("⬇️ ZipAll"):
|
475 |
+
zip_name = create_zip_of_files(all_md, all_mp3, all_wav,
|
476 |
+
input_question=st.session_state.get('last_query', ''))
|
477 |
if zip_name:
|
478 |
+
st.sidebar.markdown(get_download_link(zip_name, file_type="zip"),
|
479 |
+
unsafe_allow_html=True)
|
480 |
|
481 |
for group_name, files in groups_sorted:
|
482 |
timestamp_dt = datetime.strptime(group_name, "%y%m_%H%M") if len(group_name) == 9 else None
|
483 |
group_label = timestamp_dt.strftime("%Y-%m-%d %H:%M") if timestamp_dt else group_name
|
484 |
|
485 |
with st.sidebar.expander(f"📁 {group_label} ({len(files)})", expanded=True):
|
486 |
+
c1, c2 = st.columns(2)
|
487 |
with c1:
|
488 |
if st.button("👀ViewGrp", key="view_group_"+group_name):
|
489 |
st.session_state.viewing_prefix = group_name
|
|
|
501 |
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%H:%M:%S")
|
502 |
st.write(f"{emoji} **{fname}** - {ctime}")
|
503 |
|
|
|
504 |
def main():
|
505 |
+
# Get marquee settings first
|
506 |
+
marquee_settings = get_marquee_settings()
|
507 |
|
508 |
+
# Initial welcome marquee
|
509 |
+
display_marquee(st.session_state['marquee_content'],
|
510 |
+
{**marquee_settings, "font-size": "28px", "lineHeight": "50px"},
|
511 |
+
key_suffix="welcome")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
512 |
|
513 |
+
# Load files for sidebar
|
514 |
+
groups_sorted = load_files_for_sidebar()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
516 |
# Update marquee content when viewing files
|
517 |
if st.session_state.viewing_prefix:
|
518 |
for group_name, files in groups_sorted:
|
|
|
520 |
for f in files:
|
521 |
if f.endswith('.md'):
|
522 |
with open(f, 'r', encoding='utf-8') as file:
|
523 |
+
st.session_state['marquee_content'] = file.read()[:280]
|
|
|
524 |
|
525 |
+
# Voice Settings
|
|
|
526 |
st.sidebar.markdown("### 🎤 Voice Settings")
|
527 |
selected_voice = st.sidebar.selectbox(
|
528 |
"Select TTS Voice:",
|
|
|
530 |
index=EDGE_TTS_VOICES.index(st.session_state['tts_voice'])
|
531 |
)
|
532 |
|
533 |
+
# Audio Format Settings
|
534 |
st.sidebar.markdown("### 🔊 Audio Format")
|
535 |
selected_format = st.sidebar.radio(
|
536 |
"Choose Audio Format:",
|
537 |
options=["MP3", "WAV"],
|
538 |
+
index=0
|
539 |
)
|
540 |
|
|
|
541 |
if selected_voice != st.session_state['tts_voice']:
|
542 |
st.session_state['tts_voice'] = selected_voice
|
543 |
st.rerun()
|
|
|
545 |
st.session_state['audio_format'] = selected_format.lower()
|
546 |
st.rerun()
|
547 |
|
548 |
+
# Main Interface
|
549 |
+
tab_main = st.radio("Action:", ["🎤 Voice", "📸 Media", "🔍 ArXiv", "📝 Editor"],
|
550 |
+
horizontal=True)
|
551 |
|
552 |
mycomponent = components.declare_component("mycomponent", path="mycomponent")
|
553 |
val = mycomponent(my_input_value="Hello")
|
554 |
|
|
|
555 |
if val:
|
556 |
val_stripped = val.replace('\\n', ' ')
|
557 |
edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100)
|
|
|
558 |
|
559 |
run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"])
|
560 |
col1, col2 = st.columns(2)
|
561 |
with col1:
|
562 |
autorun = st.checkbox("⚙ AutoRun", value=True)
|
563 |
with col2:
|
564 |
+
full_audio = st.checkbox("📚FullAudio", value=False)
|
|
|
565 |
|
566 |
input_changed = (val != st.session_state.old_val)
|
567 |
|
568 |
if autorun and input_changed:
|
569 |
st.session_state.old_val = val
|
570 |
+
st.session_state.last_query = edited_input
|
571 |
if run_option == "Arxiv":
|
572 |
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
|
573 |
+
titles_summary=True, full_audio=full_audio,
|
574 |
+
marquee_settings=marquee_settings)
|
575 |
else:
|
576 |
if run_option == "GPT-4o":
|
577 |
process_with_gpt(edited_input)
|
|
|
580 |
else:
|
581 |
if st.button("▶ Run"):
|
582 |
st.session_state.old_val = val
|
583 |
+
st.session_state.last_query = edited_input
|
584 |
if run_option == "Arxiv":
|
585 |
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
|
586 |
+
titles_summary=True, full_audio=full_audio,
|
587 |
+
marquee_settings=marquee_settings)
|
588 |
else:
|
589 |
if run_option == "GPT-4o":
|
590 |
process_with_gpt(edited_input)
|
591 |
elif run_option == "Claude-3.5":
|
592 |
process_with_claude(edited_input)
|
593 |
|
594 |
+
# ArXiv Tab
|
595 |
if tab_main == "🔍 ArXiv":
|
|
|
|
|
|
|
|
|
|
|
596 |
st.subheader("🔍 Query ArXiv")
|
597 |
q = st.text_input("🔍 Query:")
|
598 |
|
|
|
600 |
vocal_summary = st.checkbox("🎙ShortAudio", value=True)
|
601 |
extended_refs = st.checkbox("📜LongRefs", value=False)
|
602 |
titles_summary = st.checkbox("🔖TitlesOnly", value=True)
|
603 |
+
full_audio = st.checkbox("📚FullAudio", value=False)
|
604 |
+
full_transcript = st.checkbox("🧾FullTranscript", value=False)
|
|
|
|
|
605 |
|
606 |
if q and st.button("🔍Run"):
|
607 |
+
st.session_state.last_query = q
|
608 |
result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs,
|
609 |
+
titles_summary=titles_summary, full_audio=full_audio,
|
610 |
+
marquee_settings=marquee_settings)
|
611 |
if full_transcript:
|
612 |
+
create_file(q, result, "md")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
613 |
|
614 |
+
# Voice Tab
|
615 |
elif tab_main == "🎤 Voice":
|
616 |
st.subheader("🎤 Voice Input")
|
617 |
user_text = st.text_area("💬 Message:", height=100)
|
618 |
user_text = user_text.strip().replace('\n', ' ')
|
619 |
+
|
620 |
if st.button("📨 Send"):
|
621 |
process_with_gpt(user_text)
|
622 |
+
|
623 |
st.subheader("📜 Chat History")
|
624 |
+
t1, t2 = st.tabs(["Claude History", "GPT-4o History"])
|
625 |
with t1:
|
626 |
for c in st.session_state.chat_history:
|
627 |
st.write("**You:**", c["user"])
|
|
|
631 |
with st.chat_message(m["role"]):
|
632 |
st.markdown(m["content"])
|
633 |
|
634 |
+
# Media Tab
|
635 |
elif tab_main == "📸 Media":
|
636 |
st.header("📸 Images & 🎥 Videos")
|
637 |
tabs = st.tabs(["🖼 Images", "🎥 Video"])
|
638 |
with tabs[0]:
|
639 |
+
imgs = glob.glob("*.png") + glob.glob("*.jpg")
|
640 |
if imgs:
|
641 |
+
c = st.slider("Cols", 1, 5, 3)
|
642 |
cols = st.columns(c)
|
643 |
+
for i, f in enumerate(imgs):
|
644 |
+
with cols[i % c]:
|
645 |
+
st.image(Image.open(f), use_container_width=True)
|
646 |
if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
|
647 |
+
response = openai_client.chat.completions.create(
|
648 |
+
model=st.session_state["openai_model"],
|
649 |
+
messages=[
|
650 |
+
{"role": "system", "content": "Analyze the image content."},
|
651 |
+
{"role": "user", "content": [
|
652 |
+
{"type": "image_url",
|
653 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64.b64encode(open(f, 'rb').read()).decode()}"}}
|
654 |
+
]}
|
655 |
+
]
|
656 |
+
)
|
657 |
+
st.markdown(response.choices[0].message.content)
|
658 |
else:
|
659 |
st.write("No images found.")
|
660 |
+
|
661 |
with tabs[1]:
|
662 |
vids = glob.glob("*.mp4")
|
663 |
if vids:
|
|
|
665 |
with st.expander(f"🎥 {os.path.basename(v)}"):
|
666 |
st.video(v)
|
667 |
if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
|
668 |
+
frames = process_video(v)
|
669 |
+
response = openai_client.chat.completions.create(
|
670 |
+
model=st.session_state["openai_model"],
|
671 |
+
messages=[
|
672 |
+
{"role": "system", "content": "Analyze video frames."},
|
673 |
+
{"role": "user", "content": [
|
674 |
+
{"type": "image_url",
|
675 |
+
"image_url": {"url": f"data:image/jpeg;base64,{frame}"}}
|
676 |
+
for frame in frames
|
677 |
+
]}
|
678 |
+
]
|
679 |
+
)
|
680 |
+
st.markdown(response.choices[0].message.content)
|
681 |
else:
|
682 |
st.write("No videos found.")
|
683 |
|
684 |
+
# Editor Tab
|
685 |
elif tab_main == "📝 Editor":
|
686 |
+
if st.session_state.editing_file:
|
687 |
+
st.subheader(f"Editing: {st.session_state.editing_file}")
|
688 |
+
new_text = st.text_area("✏️ Content:", st.session_state.edit_new_content, height=300)
|
689 |
if st.button("💾 Save"):
|
690 |
+
with open(st.session_state.editing_file, 'w', encoding='utf-8') as f:
|
691 |
f.write(new_text)
|
692 |
+
st.success("File updated successfully!")
|
693 |
st.session_state.should_rerun = True
|
694 |
+
st.session_state.editing_file = None
|
695 |
else:
|
696 |
st.write("Select a file from the sidebar to edit.")
|
697 |
|
698 |
+
# Display file manager in sidebar
|
|
|
699 |
display_file_manager_sidebar(groups_sorted)
|
700 |
|
701 |
+
# Display viewed group content
|
702 |
if st.session_state.viewing_prefix and any(st.session_state.viewing_prefix == group for group, _ in groups_sorted):
|
703 |
st.write("---")
|
704 |
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
|
|
|
709 |
ext = os.path.splitext(fname)[1].lower().strip('.')
|
710 |
st.write(f"### {fname}")
|
711 |
if ext == "md":
|
712 |
+
content = open(f, 'r', encoding='utf-8').read()
|
713 |
st.markdown(content)
|
714 |
+
elif ext in ["mp3", "wav"]:
|
715 |
st.audio(f)
|
|
|
|
|
716 |
else:
|
717 |
st.markdown(get_download_link(f), unsafe_allow_html=True)
|
718 |
break
|
719 |
if st.button("❌ Close"):
|
720 |
st.session_state.viewing_prefix = None
|
721 |
+
st.session_state['marquee_content'] = "🚀 Welcome to TalkingAIResearcher | 🤖 Your Research Assistant"
|
722 |
+
|
723 |
+
# Add custom CSS
|
724 |
+
st.markdown("""
|
725 |
+
<style>
|
726 |
+
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
|
727 |
+
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
|
728 |
+
.stButton>button { margin-right: 0.5rem; }
|
729 |
+
</style>
|
730 |
+
""", unsafe_allow_html=True)
|
731 |
+
|
732 |
+
# Handle rerun if needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
733 |
if st.session_state.should_rerun:
|
734 |
st.session_state.should_rerun = False
|
735 |
st.rerun()
|
736 |
|
737 |
+
if __name__ == "__main__":
|
738 |
main()
|