import streamlit as st import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile import plotly.graph_objects as go import streamlit.components.v1 as components from datetime import datetime from audio_recorder_streamlit import audio_recorder from bs4 import BeautifulSoup from collections import defaultdict, deque from dotenv import load_dotenv from gradio_client import Client from huggingface_hub import InferenceClient from io import BytesIO from PIL import Image from PyPDF2 import PdfReader from urllib.parse import quote from xml.etree import ElementTree as ET from openai import OpenAI import extra_streamlit_components as stx from streamlit.runtime.scriptrunner import get_script_run_ctx import asyncio import edge_tts # ๐ŸŽฏ 1. Core Configuration & Setup st.set_page_config( page_title="๐ŸšฒBikeAI๐Ÿ† Claude/GPT Research", page_icon="๐Ÿšฒ๐Ÿ†", layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': 'https://huggingface.co/spaces/awacke1', 'About': "๐ŸšฒBikeAI๐Ÿ† Claude/GPT Research AI" } ) load_dotenv() # ๐Ÿง  2. Text Cleaning Functionality class TextCleaner: """Helper class for text cleaning operations""" def __init__(self): self.replacements = { "\\n": " ", # Replace escaped newlines "": "", # Remove end tags "": "", # Remove start tags "\n": " ", # Replace actual newlines "\r": " ", # Replace carriage returns "\t": " ", # Replace tabs } self.preserve_replacements = { "\\n": "\n", # Convert escaped to actual newlines "": "", # Remove end tags "": "", # Remove start tags "\r": "\n", # Convert returns to newlines "\t": " " # Convert tabs to spaces } def clean_text(self, text: str, preserve_format: bool = False) -> str: """ Clean text removing problematic characters and normalizing whitespace. Args: text: Text to clean preserve_format: Whether to preserve some formatting (newlines etc) Returns: Cleaned text string """ if not text or not isinstance(text, str): return "" replacements = (self.preserve_replacements if preserve_format else self.replacements) cleaned = text for old, new in replacements.items(): cleaned = cleaned.replace(old, new) # Normalize whitespace while preserving paragraphs if needed if preserve_format: cleaned = re.sub(r'\n{3,}', '\n\n', cleaned) else: cleaned = re.sub(r'\s+', ' ', cleaned) return cleaned.strip() def clean_dict(self, data: dict, fields: list) -> dict: """Clean specified fields in a dictionary""" if not data or not isinstance(data, dict): return {} cleaned = data.copy() for field in fields: if field in cleaned: cleaned[field] = self.clean_text(cleaned[field]) return cleaned def clean_list(self, items: list, fields: list) -> list: """Clean specified fields in a list of dictionaries""" if not isinstance(items, list): return [] return [self.clean_dict(item, fields) for item in items] # Initialize cleaner cleaner = TextCleaner() # ๐Ÿ”‘ 3. API Setup & Clients openai_api_key = os.getenv('OPENAI_API_KEY', "") anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") xai_key = os.getenv('xai',"") if 'OPENAI_API_KEY' in st.secrets: openai_api_key = st.secrets['OPENAI_API_KEY'] if 'ANTHROPIC_API_KEY' in st.secrets: anthropic_key = st.secrets["ANTHROPIC_API_KEY"] openai.api_key = openai_api_key claude_client = anthropic.Anthropic(api_key=anthropic_key) openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) HF_KEY = os.getenv('HF_KEY') API_URL = os.getenv('API_URL') # ๐Ÿ“ 4. Session State Management if 'transcript_history' not in st.session_state: st.session_state['transcript_history'] = [] if 'chat_history' not in st.session_state: st.session_state['chat_history'] = [] if 'openai_model' not in st.session_state: st.session_state['openai_model'] = "gpt-4-1106-preview" if 'messages' not in st.session_state: st.session_state['messages'] = [] if 'last_voice_input' not in st.session_state: st.session_state['last_voice_input'] = "" if 'editing_file' not in st.session_state: st.session_state['editing_file'] = None if 'edit_new_name' not in st.session_state: st.session_state['edit_new_name'] = "" if 'edit_new_content' not in st.session_state: st.session_state['edit_new_content'] = "" if 'viewing_prefix' not in st.session_state: st.session_state['viewing_prefix'] = None if 'should_rerun' not in st.session_state: st.session_state['should_rerun'] = False if 'old_val' not in st.session_state: st.session_state['old_val'] = None # ๐ŸŽจ 5. Custom CSS st.markdown(""" """, unsafe_allow_html=True) FILE_EMOJIS = { "md": "๐Ÿ“", "mp3": "๐ŸŽต", } # ๐Ÿง  6. High-Information Content Extraction def get_high_info_terms(text: str) -> list: """Extract high-information terms from text, including key phrases.""" text = cleaner.clean_text(text) # ... rest of function remains the same ... [Your existing get_high_info_terms implementation] def clean_text_for_filename(text: str) -> str: """Remove punctuation and short filler words, return a compact string.""" text = cleaner.clean_text(text) # ... rest of function remains the same ... [Your existing clean_text_for_filename implementation] # ๐Ÿ“ 7. File Operations def generate_filename(prompt, response, file_type="md"): """Generate filename with meaningful terms.""" cleaned_prompt = cleaner.clean_text(prompt) cleaned_response = cleaner.clean_text(response) prefix = datetime.now().strftime("%y%m_%H%M") + "_" combined = (cleaned_prompt + " " + cleaned_response).strip() info_terms = get_high_info_terms(combined) snippet = (cleaned_prompt[:100] + " " + cleaned_response[:100]).strip() snippet_cleaned = clean_text_for_filename(snippet) name_parts = info_terms + [snippet_cleaned] full_name = '_'.join(name_parts) if len(full_name) > 150: full_name = full_name[:150] filename = f"{prefix}{full_name}.{file_type}" return filename def create_file(prompt, response, file_type="md"): """Create file with intelligent naming""" filename = generate_filename(prompt.strip(), response.strip(), file_type) cleaned_prompt = cleaner.clean_text(prompt) cleaned_response = cleaner.clean_text(response, preserve_format=True) with open(filename, 'w', encoding='utf-8') as f: f.write(cleaned_prompt + "\n\n" + cleaned_response) return filename def get_download_link(file): """Generate download link for file""" with open(file, "rb") as f: b64 = base64.b64encode(f.read()).decode() return f'๐Ÿ“‚ Download {os.path.basename(file)}' # ๐Ÿ”Š 8. Audio Processing def clean_for_speech(text: str) -> str: """Clean text for speech synthesis""" text = cleaner.clean_text(text) text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) return text @st.cache_resource def speech_synthesis_html(result): """Create HTML for speech synthesis""" cleaned_result = clean_for_speech(result) html_code = f""" """ components.html(html_code, height=0) async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): """Generate audio using Edge TTS""" text = clean_for_speech(text) if not text.strip(): return None rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) out_fn = generate_filename(text, text, "mp3") await communicate.save(out_fn) return out_fn def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0): """Wrapper for edge TTS generation""" return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch)) def play_and_download_audio(file_path): """Play and provide download link for audio""" if file_path and os.path.exists(file_path): st.audio(file_path) dl_link = f'Download {os.path.basename(file_path)}' st.markdown(dl_link, unsafe_allow_html=True) # ๐ŸŽฌ 9. Media Processing def process_image(image_path, user_prompt): """Process image with GPT-4V""" with open(image_path, "rb") as imgf: image_data = imgf.read() b64img = base64.b64encode(image_data).decode("utf-8") cleaned_prompt = cleaner.clean_text(user_prompt) resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": [ {"type": "text", "text": cleaned_prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}} ]} ], temperature=0.0, ) return cleaner.clean_text(resp.choices[0].message.content, preserve_format=True) def process_audio(audio_path): """Process audio with Whisper""" with open(audio_path, "rb") as f: transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f) cleaned_text = cleaner.clean_text(transcription.text) st.session_state.messages.append({ "role": "user", "content": cleaned_text }) return cleaned_text def process_video(video_path, seconds_per_frame=1): """Extract frames from video""" # ... function remains the same as it handles binary data ... [Your existing process_video implementation] def process_video_with_gpt(video_path, prompt): """Analyze video frames with GPT-4V""" frames = process_video(video_path) cleaned_prompt = cleaner.clean_text(prompt) resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role":"system","content":"Analyze video frames."}, {"role":"user","content":[ {"type":"text","text":cleaned_prompt}, *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames] ]} ] ) return cleaner.clean_text(resp.choices[0].message.content, preserve_format=True) # ๐Ÿค– 10. AI Model Integration def process_with_claude(text): """Process text with Claude""" if not text: return cleaned_input = cleaner.clean_text(text) with st.chat_message("user"): st.markdown(cleaned_input) with st.chat_message("assistant"): r = claude_client.messages.create( model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role":"user","content":cleaned_input}] ) raw_response = r.content[0].text cleaned_response = cleaner.clean_text(raw_response, preserve_format=True) st.write("Claude-3.5: " + cleaned_response) create_file(cleaned_input, cleaned_response, "md") st.session_state.chat_history.append({ "user": cleaned_input, "claude": cleaned_response }) return cleaned_response def process_with_gpt(text): """Process text with GPT-4""" if not text: return cleaned_input = cleaner.clean_text(text) st.session_state.messages.append({ "role": "user", "content": cleaned_input }) with st.chat_message("user"): st.markdown(cleaned_input) with st.chat_message("assistant"): c = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=st.session_state.messages, stream=False ) raw_response = c.choices[0].message.content cleaned_response = cleaner.clean_text(raw_response, preserve_format=True) st.write("GPT-4o: " + cleaned_response) create_file(cleaned_input, cleaned_response, "md") st.session_state.messages.append({ "role": "assistant", "content": cleaned_response }) return cleaned_response def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False): """Perform Arxiv search and generate audio summaries""" cleaned_query = cleaner.clean_text(q) start = time.time() client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") refs = client.predict(cleaned_query, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0] r2 = client.predict(cleaned_query, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm") # Clean responses cleaned_r2 = cleaner.clean_text(r2, preserve_format=True) cleaned_refs = cleaner.clean_text(refs, preserve_format=True) result = f"### ๐Ÿ”Ž {cleaned_query}\n\n{cleaned_r2}\n\n{cleaned_refs}" st.markdown(result) if full_audio: complete_text = f"Complete response for query: {cleaned_query}. {clean_for_speech(cleaned_r2)} {clean_for_speech(cleaned_refs)}" audio_file_full = speak_with_edge_tts(complete_text) st.write("### ๐Ÿ“š Full Audio") play_and_download_audio(audio_file_full) if vocal_summary: main_text = clean_for_speech(cleaned_r2) audio_file_main = speak_with_edge_tts(main_text) st.write("### ๐ŸŽ™ Short Audio") play_and_download_audio(audio_file_main) if extended_refs: summaries_text = "Extended references: " + cleaned_refs.replace('"','') summaries_text = clean_for_speech(summaries_text) audio_file_refs = speak_with_edge_tts(summaries_text) st.write("### ๐Ÿ“œ Long Refs") play_and_download_audio(audio_file_refs) if titles_summary: titles = [] for line in cleaned_refs.split('\n'): m = re.search(r"\[([^\]]+)\]", line) if m: titles.append(m.group(1)) if titles: titles_text = "Titles: " + ", ".join(titles) titles_text = clean_for_speech(titles_text) audio_file_titles = speak_with_edge_tts(titles_text) st.write("### ๐Ÿ”– Titles") play_and_download_audio(audio_file_titles) elapsed = time.time() - start st.write(f"**Total Elapsed:** {elapsed:.2f} s") create_file(cleaned_query, result, "md") return result def save_full_transcript(query, text): """Save full transcript of results as a file.""" cleaned_query = cleaner.clean_text(query) cleaned_text = cleaner.clean_text(text, preserve_format=True) create_file(cleaned_query, cleaned_text, "md") # ๐Ÿ“‚ 11. File Management def create_zip_of_files(md_files, mp3_files): """Create zip with intelligent naming""" md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files if not all_files: return None all_content = [] for f in all_files: if f.endswith('.md'): with open(f, 'r', encoding='utf-8') as file: content = file.read() cleaned_content = cleaner.clean_text(content) all_content.append(cleaned_content) elif f.endswith('.mp3'): all_content.append(os.path.basename(f)) combined_content = " ".join(all_content) info_terms = get_high_info_terms(combined_content) timestamp = datetime.now().strftime("%y%m_%H%M") name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3]) zip_name = f"{timestamp}_{name_text}.zip" with zipfile.ZipFile(zip_name, 'w') as z: for f in all_files: z.write(f) return zip_name def load_files_for_sidebar(): """Load and group files for sidebar display""" md_files = glob.glob("*.md") mp3_files = glob.glob("*.mp3") md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files groups = defaultdict(list) for f in all_files: fname = os.path.basename(f) prefix = fname[:10] groups[prefix].append(f) for prefix in groups: groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True) sorted_prefixes = sorted(groups.keys(), key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), reverse=True) return groups, sorted_prefixes def extract_keywords_from_md(files): """Extract keywords from markdown files""" text = "" for f in files: if f.endswith(".md"): with open(f, 'r', encoding='utf-8') as file: content = file.read() cleaned_content = cleaner.clean_text(content) text += " " + cleaned_content return get_high_info_terms(text) def display_file_manager_sidebar(groups, sorted_prefixes): """Display file manager in sidebar""" st.sidebar.title("๐ŸŽต Audio & Docs Manager") all_md = [] all_mp3 = [] for prefix in groups: for f in groups[prefix]: if f.endswith(".md"): all_md.append(f) elif f.endswith(".mp3"): all_mp3.append(f) top_bar = st.sidebar.columns(3) with top_bar[0]: if st.button("๐Ÿ—‘ DelAllMD"): for f in all_md: os.remove(f) st.session_state.should_rerun = True with top_bar[1]: if st.button("๐Ÿ—‘ DelAllMP3"): for f in all_mp3: os.remove(f) st.session_state.should_rerun = True with top_bar[2]: if st.button("โฌ‡๏ธ ZipAll"): z = create_zip_of_files(all_md, all_mp3) if z: st.sidebar.markdown(get_download_link(z), unsafe_allow_html=True) for prefix in sorted_prefixes: files = groups[prefix] kw = extract_keywords_from_md(files) keywords_str = " ".join(kw) if kw else "No Keywords" with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True): c1, c2 = st.columns(2) with c1: if st.button("๐Ÿ‘€ViewGrp", key="view_group_"+prefix): st.session_state.viewing_prefix = prefix with c2: if st.button("๐Ÿ—‘DelGrp", key="del_group_"+prefix): for f in files: os.remove(f) st.success(f"Deleted group {prefix}!") st.session_state.should_rerun = True for f in files: fname = os.path.basename(f) ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") st.write(f"**{fname}** - {ctime}") # ๐ŸŽฏ 12. Main Application def main(): st.sidebar.markdown("### ๐ŸšฒBikeAI๐Ÿ† Multi-Agent Research") tab_main = st.radio("Action:", ["๐ŸŽค Voice", "๐Ÿ“ธ Media", "๐Ÿ” ArXiv", "๐Ÿ“ Editor"], horizontal=True) mycomponent = components.declare_component("mycomponent", path="mycomponent") val = mycomponent(my_input_value="Hello") # Show input in a text box for editing if detected if val: cleaned_val = cleaner.clean_text(val) edited_input = st.text_area("โœ๏ธ Edit Input:", value=cleaned_val, height=100) run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"]) col1, col2 = st.columns(2) with col1: autorun = st.checkbox("โš™ AutoRun", value=True) with col2: full_audio = st.checkbox("๐Ÿ“šFullAudio", value=False, help="Generate full audio response") input_changed = (val != st.session_state.old_val) if autorun and input_changed: st.session_state.old_val = val if run_option == "Arxiv": perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=full_audio) else: if run_option == "GPT-4o": process_with_gpt(edited_input) elif run_option == "Claude-3.5": process_with_claude(edited_input) else: if st.button("โ–ถ Run"): st.session_state.old_val = val if run_option == "Arxiv": perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=full_audio) else: if run_option == "GPT-4o": process_with_gpt(edited_input) elif run_option == "Claude-3.5": process_with_claude(edited_input) if tab_main == "๐Ÿ” ArXiv": st.subheader("๐Ÿ” Query ArXiv") q = st.text_input("๐Ÿ” Query:") q = cleaner.clean_text(q) st.markdown("### ๐ŸŽ› Options") vocal_summary = st.checkbox("๐ŸŽ™ShortAudio", value=True) extended_refs = st.checkbox("๐Ÿ“œLongRefs", value=False) titles_summary = st.checkbox("๐Ÿ”–TitlesOnly", value=True) full_audio = st.checkbox("๐Ÿ“šFullAudio", value=False, help="Generate full audio response") full_transcript = st.checkbox("๐ŸงพFullTranscript", value=False, help="Generate a full transcript file") if q and st.button("๐Ÿ”Run"): result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary, full_audio=full_audio) if full_transcript: save_full_transcript(q, result) st.markdown("### Change Prompt & Re-Run") q_new = st.text_input("๐Ÿ”„ Modify Query:") q_new = cleaner.clean_text(q_new) if q_new and st.button("๐Ÿ”„ Re-Run with Modified Query"): result = perform_ai_lookup(q_new, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary, full_audio=full_audio) if full_transcript: save_full_transcript(q_new, result) elif tab_main == "๐ŸŽค Voice": st.subheader("๐ŸŽค Voice Input") user_text = st.text_area("๐Ÿ’ฌ Message:", height=100) user_text = cleaner.clean_text(user_text) if st.button("๐Ÿ“จ Send"): process_with_gpt(user_text) st.subheader("๐Ÿ“œ Chat History") t1, t2 = st.tabs(["Claude History", "GPT-4o History"]) with t1: for c in st.session_state.chat_history: st.write("**You:**", cleaner.clean_text(c["user"])) st.write("**Claude:**", cleaner.clean_text(c["claude"], preserve_format=True)) with t2: for m in st.session_state.messages: with st.chat_message(m["role"]): if m["role"] == "user": st.markdown(cleaner.clean_text(m["content"])) else: st.markdown(cleaner.clean_text(m["content"], preserve_format=True)) elif tab_main == "๐Ÿ“ธ Media": st.header("๐Ÿ“ธ Images & ๐ŸŽฅ Videos") tabs = st.tabs(["๐Ÿ–ผ Images", "๐ŸŽฅ Video"]) with tabs[0]: imgs = glob.glob("*.png") + glob.glob("*.jpg") if imgs: c = st.slider("Cols", 1, 5, 3) cols = st.columns(c) for i, f in enumerate(imgs): with cols[i%c]: st.image(Image.open(f), use_container_width=True) if st.button(f"๐Ÿ‘€ Analyze {os.path.basename(f)}", key=f"analyze_{f}"): a = process_image(f, "Describe this image.") st.markdown(cleaner.clean_text(a, preserve_format=True)) else: st.write("No images found.") with tabs[1]: vids = glob.glob("*.mp4") if vids: for v in vids: with st.expander(f"๐ŸŽฅ {os.path.basename(v)}"): st.video(v) if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"): a = process_video_with_gpt(v, "Describe video.") st.markdown(cleaner.clean_text(a, preserve_format=True)) else: st.write("No videos found.") elif tab_main == "๐Ÿ“ Editor": if getattr(st.session_state, 'current_file', None): st.subheader(f"Editing: {st.session_state.current_file}") with open(st.session_state.current_file, 'r', encoding='utf-8') as f: content = f.read() content = cleaner.clean_text(content, preserve_format=True) new_text = st.text_area("โœ๏ธ Content:", content, height=300) if st.button("๐Ÿ’พ Save"): cleaned_content = cleaner.clean_text(new_text, preserve_format=True) with open(st.session_state.current_file, 'w', encoding='utf-8') as f: f.write(cleaned_content) st.success("Updated!") st.session_state.should_rerun = True else: st.write("Select a file from the sidebar to edit.") groups, sorted_prefixes = load_files_for_sidebar() display_file_manager_sidebar(groups, sorted_prefixes) if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups: st.write("---") st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") for f in groups[st.session_state.viewing_prefix]: fname = os.path.basename(f) ext = os.path.splitext(fname)[1].lower().strip('.') st.write(f"### {fname}") if ext == "md": with open(f, 'r', encoding='utf-8') as file: content = file.read() st.markdown(cleaner.clean_text(content, preserve_format=True)) elif ext == "mp3": st.audio(f) else: st.markdown(get_download_link(f), unsafe_allow_html=True) if st.button("โŒ Close"): st.session_state.viewing_prefix = None if st.session_state.should_rerun: st.session_state.should_rerun = False st.rerun() if __name__ == "__main__": main()