import streamlit as st import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile import plotly.graph_objects as go import streamlit.components.v1 as components from datetime import datetime from audio_recorder_streamlit import audio_recorder from bs4 import BeautifulSoup from collections import defaultdict, deque, Counter from dotenv import load_dotenv from gradio_client import Client from huggingface_hub import InferenceClient from io import BytesIO from PIL import Image from PyPDF2 import PdfReader from urllib.parse import quote from xml.etree import ElementTree as ET from openai import OpenAI import extra_streamlit_components as stx from streamlit.runtime.scriptrunner import get_script_run_ctx import asyncio import edge_tts from streamlit_marquee import streamlit_marquee # ๐ŸŽฏ 1. Core Configuration & Setup st.set_page_config( page_title="๐ŸšฒTalkingAIResearcher๐Ÿ†", page_icon="๐Ÿšฒ๐Ÿ†", layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': 'https://huggingface.co/spaces/awacke1', 'About': "๐ŸšฒTalkingAIResearcher๐Ÿ†" } ) load_dotenv() # Add available English voices for Edge TTS EDGE_TTS_VOICES = [ "en-US-AriaNeural", "en-US-GuyNeural", "en-US-JennyNeural", "en-GB-SoniaNeural", "en-GB-RyanNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural", "en-CA-ClaraNeural", "en-CA-LiamNeural" ] # Initialize session state variables if 'marquee_settings' not in st.session_state: # Default to 20s animationDuration instead of 10s: st.session_state['marquee_settings'] = { "background": "#1E1E1E", "color": "#FFFFFF", "font-size": "14px", "animationDuration": "20s", # <- changed to 20s "width": "100%", "lineHeight": "35px" } if 'tts_voice' not in st.session_state: st.session_state['tts_voice'] = EDGE_TTS_VOICES[0] if 'audio_format' not in st.session_state: st.session_state['audio_format'] = 'mp3' if 'transcript_history' not in st.session_state: st.session_state['transcript_history'] = [] if 'chat_history' not in st.session_state: st.session_state['chat_history'] = [] if 'openai_model' not in st.session_state: st.session_state['openai_model'] = "gpt-4o-2024-05-13" if 'messages' not in st.session_state: st.session_state['messages'] = [] if 'last_voice_input' not in st.session_state: st.session_state['last_voice_input'] = "" if 'editing_file' not in st.session_state: st.session_state['editing_file'] = None if 'edit_new_name' not in st.session_state: st.session_state['edit_new_name'] = "" if 'edit_new_content' not in st.session_state: st.session_state['edit_new_content'] = "" if 'viewing_prefix' not in st.session_state: st.session_state['viewing_prefix'] = None if 'should_rerun' not in st.session_state: st.session_state['should_rerun'] = False if 'old_val' not in st.session_state: st.session_state['old_val'] = None if 'last_query' not in st.session_state: st.session_state['last_query'] = "" if 'marquee_content' not in st.session_state: st.session_state['marquee_content'] = "๐Ÿš€ Welcome to TalkingAIResearcher | ๐Ÿค– Your Research Assistant" # ๐Ÿ”‘ 2. API Setup & Clients openai_api_key = os.getenv('OPENAI_API_KEY', "") anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") xai_key = os.getenv('xai',"") if 'OPENAI_API_KEY' in st.secrets: openai_api_key = st.secrets['OPENAI_API_KEY'] if 'ANTHROPIC_API_KEY' in st.secrets: anthropic_key = st.secrets["ANTHROPIC_API_KEY"] openai.api_key = openai_api_key openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) HF_KEY = os.getenv('HF_KEY') API_URL = os.getenv('API_URL') # Constants FILE_EMOJIS = { "md": "๐Ÿ“", "mp3": "๐ŸŽต", "wav": "๐Ÿ”Š" } def get_central_time(): """Get current time in US Central timezone""" central = pytz.timezone('US/Central') return datetime.now(central) def format_timestamp_prefix(): """Generate timestamp prefix in format MM_dd_yy_hh_mm_AM/PM""" ct = get_central_time() return ct.strftime("%m_%d_%y_%I_%M_%p") def initialize_marquee_settings(): """Initialize marquee settings in session state""" if 'marquee_settings' not in st.session_state: st.session_state['marquee_settings'] = { "background": "#1E1E1E", "color": "#FFFFFF", "font-size": "14px", "animationDuration": "20s", "width": "100%", "lineHeight": "35px" } def get_marquee_settings(): """Get or update marquee settings from session state""" initialize_marquee_settings() return st.session_state['marquee_settings'] def update_marquee_settings_ui(): """Update marquee settings via UI controls""" initialize_marquee_settings() st.sidebar.markdown("### ๐ŸŽฏ Marquee Settings") cols = st.sidebar.columns(2) with cols[0]: bg_color = st.color_picker("๐ŸŽจ Background", st.session_state['marquee_settings']["background"], key="bg_color_picker") text_color = st.color_picker("โœ๏ธ Text", st.session_state['marquee_settings']["color"], key="text_color_picker") with cols[1]: font_size = st.slider("๐Ÿ“ Size", 10, 24, 14, key="font_size_slider") duration = st.slider("โฑ๏ธ Speed", 1, 20, 20, key="duration_slider") st.session_state['marquee_settings'].update({ "background": bg_color, "color": text_color, "font-size": f"{font_size}px", "animationDuration": f"{duration}s" }) def display_marquee(text, settings, key_suffix=""): """Display marquee with given text and settings""" truncated_text = text[:280] + "..." if len(text) > 280 else text streamlit_marquee( content=truncated_text, **settings, key=f"marquee_{key_suffix}" ) st.write("") def get_high_info_terms(text: str, top_n=10) -> list: """ Finds the top_n frequent words or bigrams (excluding some common stopwords). """ stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with']) words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] combined = words + bi_grams filtered = [term for term in combined if term not in stop_words and len(term.split()) <= 2] counter = Counter(filtered) return [term for term, freq in counter.most_common(top_n)] def clean_text_for_filename(text: str) -> str: """ Cleans a text so it can be used in a filename. """ text = text.lower() text = re.sub(r'[^\w\s-]', '', text) words = text.split() # remove short or unhelpful words stop_short = set(['the', 'and', 'for', 'with', 'this', 'that', 'ai', 'library']) filtered = [w for w in words if len(w) > 3 and w not in stop_short] return '_'.join(filtered)[:200] def generate_filename(prompt, response, file_type="md", max_length=200): """ Generate a shortened filename by: 1. Extracting high-info terms 2. Creating a smaller snippet 3. Cleaning & joining them 4. Removing duplicates 5. Truncating if needed """ prefix = format_timestamp_prefix() + "_" combined_text = (prompt + " " + response)[:200] info_terms = get_high_info_terms(combined_text, top_n=5) snippet = (prompt[:40] + " " + response[:40]).strip() snippet_cleaned = clean_text_for_filename(snippet) # Combine info terms + snippet, remove duplicates name_parts = info_terms + [snippet_cleaned] seen = set() unique_parts = [] for part in name_parts: if part not in seen: seen.add(part) unique_parts.append(part) full_name = '_'.join(unique_parts).strip('_') leftover_chars = max_length - len(prefix) - len(file_type) - 1 if len(full_name) > leftover_chars: full_name = full_name[:leftover_chars] return f"{prefix}{full_name}.{file_type}" def create_file(prompt, response, file_type="md"): """ Create a file using the shortened filename from generate_filename(). """ filename = generate_filename(prompt.strip(), response.strip(), file_type) with open(filename, 'w', encoding='utf-8') as f: f.write(prompt + "\n\n" + response) return filename def get_download_link(file, file_type="zip"): """ Returns an HTML anchor tag for downloading the specified file (base64-encoded). """ with open(file, "rb") as f: b64 = base64.b64encode(f.read()).decode() if file_type == "zip": return f'๐Ÿ“‚ Download {os.path.basename(file)}' elif file_type == "mp3": return f'๐ŸŽต Download {os.path.basename(file)}' elif file_type == "wav": return f'๐Ÿ”Š Download {os.path.basename(file)}' elif file_type == "md": return f'๐Ÿ“ Download {os.path.basename(file)}' else: return f'Download {os.path.basename(file)}' def clean_for_speech(text: str) -> str: """ Cleans text to make TTS output more coherent. """ text = text.replace("\n", " ") text = text.replace("", " ") text = text.replace("#", "") text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) text = re.sub(r"\s+", " ", text).strip() return text async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): text = clean_for_speech(text) if not text.strip(): return None rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) out_fn = generate_filename(text, text, file_type=file_format) await communicate.save(out_fn) return out_fn def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, file_format)) def play_and_download_audio(file_path, file_type="mp3"): """Play audio and show a direct download link in the main area.""" if file_path and os.path.exists(file_path): st.audio(file_path) dl_link = get_download_link(file_path, file_type=file_type) st.markdown(dl_link, unsafe_allow_html=True) def save_qa_with_audio(question, answer, voice=None): """Save Q&A to markdown and generate audio file.""" if not voice: voice = st.session_state['tts_voice'] # Create markdown file combined_text = f"# Question\n{question}\n\n# Answer\n{answer}" md_file = create_file(question, answer, "md") # Generate audio file audio_text = f"{question}\n\nAnswer: {answer}" audio_file = speak_with_edge_tts( audio_text, voice=voice, file_format=st.session_state['audio_format'] ) return md_file, audio_file def parse_arxiv_refs(ref_text: str): """ Given a multi-line markdown with arxiv references, parse them into a structure: [{date, title, url, authors, summary}, ...] """ if not ref_text: return [] results = [] current_paper = {} lines = ref_text.split('\n') for i, line in enumerate(lines): if line.count('|') == 2: # We found a new paper header line if current_paper: results.append(current_paper) if len(results) >= 20: break try: header_parts = line.strip('* ').split('|') date = header_parts[0].strip() title = header_parts[1].strip() url_match = re.search(r'(https://arxiv.org/\S+)', line) url = url_match.group(1) if url_match else f"paper_{len(results)}" current_paper = { 'date': date, 'title': title, 'url': url, 'authors': '', 'summary': '', 'full_audio': None, 'download_base64': '', } except Exception as e: st.warning(f"Error parsing paper header: {str(e)}") current_paper = {} continue elif current_paper: # Fill authors if empty, else fill summary if not current_paper['authors']: current_paper['authors'] = line.strip('* ') else: if current_paper['summary']: current_paper['summary'] += ' ' + line.strip() else: current_paper['summary'] = line.strip() if current_paper: results.append(current_paper) return results[:20] def create_paper_links_md(papers): """ Creates a minimal markdown list of paper titles + arxiv links (and if you store PDF links, you could also include them). """ lines = ["# Paper Links\n"] for i, p in enumerate(papers, start=1): # Basic link lines.append(f"{i}. **{p['title']}** โ€” [Arxiv]({p['url']})") return "\n".join(lines) def create_paper_audio_files(papers, input_question): """ Generate TTS audio for each paper, store base64 link for stable download, and attach to each paper dict. """ for paper in papers: try: # Just a short version for TTS audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}" audio_text = clean_for_speech(audio_text) file_format = st.session_state['audio_format'] audio_file = speak_with_edge_tts( audio_text, voice=st.session_state['tts_voice'], file_format=file_format ) paper['full_audio'] = audio_file # Store a base64 link with consistent name if audio_file: with open(audio_file, "rb") as af: b64_data = base64.b64encode(af.read()).decode() # We'll keep the original file's name as the stable download name download_filename = os.path.basename(audio_file) mime_type = "mpeg" if file_format == "mp3" else "wav" paper['download_base64'] = ( f'๐ŸŽต Download {download_filename}' ) except Exception as e: st.warning(f"Error processing paper {paper['title']}: {str(e)}") paper['full_audio'] = None paper['download_base64'] = '' def display_papers(papers, marquee_settings): """ Display the papers in the main area with marquee + expanders + audio. """ st.write("## Research Papers") for i, paper in enumerate(papers, start=1): # Show marquee marquee_text = f"๐Ÿ“„ {paper['title']} | ๐Ÿ‘ค {paper['authors'][:120]} | ๐Ÿ“ {paper['summary'][:200]}" display_marquee(marquee_text, marquee_settings, key_suffix=f"paper_{i}") with st.expander(f"{i}. ๐Ÿ“„ {paper['title']}", expanded=True): st.markdown(f"**{paper['date']} | {paper['title']} |** [Arxiv Link]({paper['url']})") st.markdown(f"*Authors:* {paper['authors']}") st.markdown(paper['summary']) if paper.get('full_audio'): st.write("๐Ÿ“š Paper Audio") st.audio(paper['full_audio']) if paper['download_base64']: st.markdown(paper['download_base64'], unsafe_allow_html=True) def display_papers_in_sidebar(papers): """ New approach: in the sidebar, mirror the paper listing with expanders for each paper, link to arxiv, st.audio, etc. """ st.sidebar.title("๐ŸŽถ Papers & Audio") for i, paper in enumerate(papers, start=1): with st.sidebar.expander(f"{i}. {paper['title']}"): st.markdown(f"**Arxiv:** [Link]({paper['url']})") if paper['full_audio']: st.audio(paper['full_audio']) if paper['download_base64']: st.markdown(paper['download_base64'], unsafe_allow_html=True) # Show minimal text if desired: st.markdown(f"**Authors:** {paper['authors']}") if paper['summary']: st.markdown(f"**Summary:** {paper['summary'][:300]}...") def create_zip_of_files(md_files, mp3_files, wav_files, input_question): """ Zip up all relevant files, but limit final zip name to 20 chars. """ md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files + wav_files if not all_files: return None all_content = [] for f in all_files: if f.endswith('.md'): with open(f, 'r', encoding='utf-8') as file: all_content.append(file.read()) elif f.endswith('.mp3') or f.endswith('.wav'): # Add some text representation basename = os.path.splitext(os.path.basename(f))[0] words = basename.replace('_', ' ') all_content.append(words) all_content.append(input_question) combined_content = " ".join(all_content) info_terms = get_high_info_terms(combined_content, top_n=10) timestamp = format_timestamp_prefix() name_text = '-'.join(term for term in info_terms[:5]) # shorter # Limit the final name to 20 chars (excluding .zip) short_zip_name = (timestamp + "_" + name_text)[:20] + ".zip" with zipfile.ZipFile(short_zip_name, 'w') as z: for f in all_files: z.write(f) return short_zip_name # ---------------------------- 1/11/2025 - add a constitution to my arxiv system templating to build configurable personality def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False): start = time.time() ai_constitution = """ You are a talented AI coder and songwriter with a unique ability to explain scientific concepts through music with code easter eggs.. Your task is to create a song that not only entertains but also educates listeners about a specific science problem and its potential solutions. (Omitted extra instructions for brevity...) """ # Claude: client = anthropic.Anthropic(api_key=anthropic_key) user_input = q response = client.messages.create( model="claude-3-sonnet-20240229", max_tokens=1000, messages=[ {"role": "user", "content": user_input} ]) st.write("Claude's reply ๐Ÿง :") st.markdown(response.content[0].text) # Save and produce audio for Claude response result = response.content[0].text create_file(q, result) # MD file md_file, audio_file = save_qa_with_audio(q, result) st.subheader("๐Ÿ“ Main Response Audio") play_and_download_audio(audio_file, st.session_state['audio_format']) # Arxiv: st.write("Arxiv's AI this Evening is Mixtral 8x7B MoE Instruct with 9 English Voices ๐Ÿง :") client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") refs = client.predict(q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0] r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm") result = f"### ๐Ÿ”Ž {q}\n\n{r2}\n\n{refs}" # Save and produce audio for second response md_file, audio_file = save_qa_with_audio(q, result) st.subheader("๐Ÿ“ Main Response Audio") play_and_download_audio(audio_file, st.session_state['audio_format']) papers = parse_arxiv_refs(refs) if papers: # 4) Create & show a minimal markdown links page before generating audio paper_links = create_paper_links_md(papers) links_file = create_file(q, paper_links, "md") st.markdown(paper_links) # Now produce audio for each paper create_paper_audio_files(papers, input_question=q) display_papers(papers, get_marquee_settings()) # Also display in the sidebar as requested display_papers_in_sidebar(papers) else: st.warning("No papers found in the response.") elapsed = time.time() - start st.write(f"**Total Elapsed:** {elapsed:.2f} s") return result def process_voice_input(text): if not text: return st.subheader("๐Ÿ” Search Results") result = perform_ai_lookup( text, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=True ) # Save final Q&A with audio md_file, audio_file = save_qa_with_audio(text, result) st.subheader("๐Ÿ“ Generated Files") st.write(f"Markdown: {md_file}") st.write(f"Audio: {audio_file}") play_and_download_audio(audio_file, st.session_state['audio_format']) def main(): # Update marquee settings UI update_marquee_settings_ui() marquee_settings = get_marquee_settings() # Initial welcome marquee display_marquee(st.session_state['marquee_content'], {**marquee_settings, "font-size": "28px", "lineHeight": "50px"}, key_suffix="welcome") # Main action tabs tab_main = st.radio("Action:", ["๐ŸŽค Voice", "๐Ÿ“ธ Media", "๐Ÿ” ArXiv", "๐Ÿ“ Editor"], horizontal=True) # Simple example usage of a Streamlit component (placeholder) mycomponent = components.declare_component("mycomponent", path="mycomponent") val = mycomponent(my_input_value="Hello") # Quick example - if the component returns text: if val: val_stripped = val.replace('\\n', ' ') edited_input = st.text_area("โœ๏ธ Edit Input:", value=val_stripped, height=100) run_option = st.selectbox("Model:", ["Arxiv"]) col1, col2 = st.columns(2) with col1: autorun = st.checkbox("โš™ AutoRun", value=True) with col2: full_audio = st.checkbox("๐Ÿ“šFullAudio", value=False) input_changed = (val != st.session_state.old_val) if autorun and input_changed: st.session_state.old_val = val st.session_state.last_query = edited_input perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=full_audio) else: if st.button("โ–ถ Run"): st.session_state.old_val = val st.session_state.last_query = edited_input perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=full_audio) # --- Tab: ArXiv if tab_main == "๐Ÿ” ArXiv": st.subheader("๐Ÿ” Query ArXiv") q = st.text_input("๐Ÿ” Query:", key="arxiv_query") st.markdown("### ๐ŸŽ› Options") vocal_summary = st.checkbox("๐ŸŽ™ShortAudio", value=True, key="option_vocal_summary") extended_refs = st.checkbox("๐Ÿ“œLongRefs", value=False, key="option_extended_refs") titles_summary = st.checkbox("๐Ÿ”–TitlesOnly", value=True, key="option_titles_summary") full_audio = st.checkbox("๐Ÿ“šFullAudio", value=False, key="option_full_audio") full_transcript = st.checkbox("๐ŸงพFullTranscript", value=False, key="option_full_transcript") if q and st.button("๐Ÿ”Run"): st.session_state.last_query = q result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary, full_audio=full_audio) if full_transcript: create_file(q, result, "md") # --- Tab: Voice elif tab_main == "๐ŸŽค Voice": st.subheader("๐ŸŽค Voice Input") # Voice and format settings st.markdown("### ๐ŸŽค Voice Settings") selected_voice = st.selectbox( "Select TTS Voice:", options=EDGE_TTS_VOICES, index=EDGE_TTS_VOICES.index(st.session_state['tts_voice']) ) st.markdown("### ๐Ÿ”Š Audio Format") selected_format = st.radio( "Choose Audio Format:", options=["MP3", "WAV"], index=0 ) if selected_voice != st.session_state['tts_voice']: st.session_state['tts_voice'] = selected_voice st.rerun() if selected_format.lower() != st.session_state['audio_format']: st.session_state['audio_format'] = selected_format.lower() st.rerun() # User text user_text = st.text_area("๐Ÿ’ฌ Message:", height=100) user_text = user_text.strip().replace('\n', ' ') if st.button("๐Ÿ“จ Send"): process_voice_input(user_text) st.subheader("๐Ÿ“œ Chat History") for c in st.session_state.chat_history: st.write("**You:**", c["user"]) st.write("**Response:**", c["claude"]) # --- Tab: Media elif tab_main == "๐Ÿ“ธ Media": st.header("๐Ÿ“ธ Media Gallery") tabs = st.tabs(["๐ŸŽต Audio", "๐Ÿ–ผ Images", "๐ŸŽฅ Video"]) # audio first = default # --- Audio Tab with tabs[0]: st.subheader("๐ŸŽต Audio Files") audio_files = glob.glob("*.mp3") + glob.glob("*.wav") if audio_files: for a in audio_files: with st.expander(os.path.basename(a)): st.audio(a) ext = os.path.splitext(a)[1].replace('.', '') dl_link = get_download_link(a, file_type=ext) st.markdown(dl_link, unsafe_allow_html=True) else: st.write("No audio files found.") # --- Images Tab with tabs[1]: st.subheader("๐Ÿ–ผ Image Files") imgs = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg") if imgs: c = st.slider("Cols", 1, 5, 3, key="cols_images") cols = st.columns(c) for i, f in enumerate(imgs): with cols[i % c]: st.image(Image.open(f), use_container_width=True) else: st.write("No images found.") # --- Video Tab with tabs[2]: st.subheader("๐ŸŽฅ Video Files") vids = glob.glob("*.mp4") + glob.glob("*.mov") + glob.glob("*.avi") if vids: for v in vids: with st.expander(os.path.basename(v)): st.video(v) else: st.write("No videos found.") # --- Tab: Editor elif tab_main == "๐Ÿ“ Editor": st.write("Select or create a file to edit. (Currently minimal demo)") st.markdown(""" """, unsafe_allow_html=True) if st.session_state.should_rerun: st.session_state.should_rerun = False st.rerun() if __name__ == "__main__": main()